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1.1

CHAPTER 1

BASIC MODEL THEORY

Language, structures and morphisms

Definition 1.1 (language) A language is a set {(f,ns), (r,n,),c: f € F,r € R,c € C'} consisting of
three kinds of elements: function symbols f, relation symbols r and constant symbols ¢. Each function
symbol f and relation symbol r come equipped with a natural number n; and n, respectively, called
their arity (that will provide information on the size of their domains).

Examples 1.2 1. The language of orderings
Lord = {(ga 2)}

consists of one binary relation symbol <.
2. The language of semigroups

LSQP = {(XaQ)}

consists of one binary function symbol Xx.
3. The language of monoids

Lynon = {(x,2), €}

consists of one binary function symbol x and one constant symbol e.
4. The language of groups

Lgp = {(X>2)a (_la 1)36}

consists of a binary function symbol x, a unary function symbol ~! and a constant symbol e.
5. The language of ordered groups

LOQP = {(X’ 2)7 (717 1)7 (<7 2)7 6}
consists of the language of groups together with one binary relation symbol <.
6. The language of rings
Lng = {(X7 2)7 <+7 2>7 (_a 2)7 €0, 61}
consists of three binary function symbols and two constant symbols.
7. The language of fields

Lfield = {(X) 2)5 (_15 ]-)7 (+7 2)7 (_7 2)) €0, 61}
consists of the language of rings together with one unary function symbol.

Remark. One often omits to make these natural numbers precise when they are obvious from the
context, and simply write a language {f,r,c: f € F,r € R,c € C}.

Definition 1.3 (structure) Let L = {(f,ny),(r,n,),c : f € F,j € R,c € C} be a language. A
structure in the language L (or L-structure for short) is given by

(M,fM,TM,cM:fEF,rER,CEC)

where

— M is a non-empty set, called its domain,
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— for every f in F, fM is a function from M"f to M, called the interpretation of f in M,
— for every 7 in R, rM
in M,
— for every c in C, ¢M is an element of M, called the interpretation of ¢ in M.
(fM,rM, M. feFreR,ce C’) is called the interpretation of the language L in M, written LM:

an L-structure is written (M, LM).

is an n,-ary relation on M (i.e. a subset of M""), the interpretation of r

Examples 1.4 1. We shall write N, Z, Q and R respectively for the set of natural numbers,
integers, rationals and real numbers. (N, <N), (Z,<%), (Q,<9Q) and (R, <R) are structures
in the language of orderings, where <V, <% and <® are the orderings induced by the natural
ordering <® on R. Note that there are many other ways to interpret <: if < denotes the binary
relation defined on R by putting z<y iff zy > 2014, then (R, <) is also a structure in the language
{<}, despite the fact that < is merely a binary relation and not even an order.

2. (R, R _RO(R 0) is a structure in the language of ordered groups (where +R denotes the usual
addition, —® the usual opposite function and <® the canonical ordering on R). Note that there
are many other ways to endow the set R with a structure in the language of ordered groups.

3. A group G is naturally equipped with a structure in the language of groups {x,~!,e}: x is
interpreted by the group law, ! by the inverse operation and e by the neutral element. Similarly
for monoids, semigroups, rings, fields in their respective languages.

Abusing notations, we sometimes identify a structure (M, LM) with its domain M. Only when
there is no ambiguity, we also simply write f instead of fM, for the interpretation in M of a symbol
f of the language. In what follows, we assume that a language always contains the binary
relation = which is interpreted in every structure by the usual equality.

Definition 1.5 (substructure, extension) Let L be a language, (M, L™) and (N, LY) two L-structures.
(N, LN) is an L-substructure of (M,LM) (or a substructure of M for short when L is obvious from
the context) if N is a subset of M and if LY is ‘the restriction of L™ to N’, more precisely:

1. For every r in R, one has ¥ =™ 0 N™r.
2. For every f in F, one has fV = fM’an.

N _ M

3. For every c in C, one has ¢ c

One also says that (M, LM) is an L-extension of (N, LY) (or simply an extension of M).

Remark. We write (N, L") C (M, LM) or N C; M when (N, L") is an L-substructure of (M, LM).
Note that this defines a reflexive, transitive, antisymmetric relation.

Examples 1.6 1. In the language of orderings {<}, the structures (N, <), (Z, <%) and (Q, <9)
are substructures of (R, <®). In fact, the substructures of (R, <®) are precisely the subsets of
R together with the induced ordering.

2. In the language of monoids {x,e}, consider the structure R where X is interpreted by the
addition and e by 0. Its substructures are precisely the subsets containing 0 that are closed
under addition (i.e the submonoids). For instance (N, +,0) is a substructure of (R, +,0).

3. In the language of groups {x,”!, e}, consider the additive structure of R (where x is interpreted
by the addition, e by zero, and ~! by the opposite function —). Its substructures are precisely
the subsets containing zero that are closed under addition and opposite (i.e the subgroups). For
instance whatever the Lg,-structure LN on N, (N, LY) is not a substructure of (R, +, —,0).

4. In the language of rings, the substructures of (R, +, X, —,0,1) (with its natural ring structure)
are precisely the subrings of R (exercise).

5. If (M, LM) is an L-structure and A C M a subset of M, then the L-structure generated by
A, written (A), is by definition the L-substructure of M whose domain is the intersection of
the domains of all the L-substructures that contain A (exercise: show that an intersection of
substructures of M is again a substructure of M). The domain of (A) is the smallest subset of
M containing A, the constants of LM and closed under the functions of LM (exercise).
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Note that the notion of substructure depends on the language L.

Definition 1.7 (morphism, embedding, isomorphism) Let (M, L) and (N, LY) be two L-structures.

1. A morphism of L-structures (or L-morphism for short, or even morphism when there is no
ambiguity about the language) from M to N is amap o : M — N that preserves the language L,
i.e. such that

— for all constant symbols ¢, the equality o(c™) = ¢V holds,
— for all relation symbols 7 and all @ in M™, then a € r™ implies o(a) € 7V,
— for all function symbols f and a in M™/, then o(f(a)) = fN(o(a)).

2. An embedding of L-structures (or L-embedding or simply embedding) from M to N is a morphism
such that for all relation symbols 7 in R and for all @ in M"", a € r* holds if and only if o(a) € rv
holds. As the language contains equality, note that an embedding is always injective.

3. An isomorphism of L-structures (or L-isomorphism, or isomorphism) from M to N is a surjective
embedding. An L-automorphism of M is an L-isomorphism from M to M.

Remark. If o : M — N is a morphism of L-structures, then o(M) is an L-substructure of N (and

in particular an L-structure). If o is in addition an L-embedding, then the map o : M — o(M) is

an isomorphism of L-structures (exercise).

Examples 1.8 1. In the language of orderings {<}, a morphism from (R, <®) to (R, <®) is an
increasing map; an embedding from R to R is a strictly increasing map.

2. In the language of groups Ly, a morphism from (R, +,—,0) to (R, 4+, —,0) is precisely a group
morphism of the additive group of R. An embedding is an injective group morphism, and an
automorphism is a group automorphism. More generally, an Lg,-morphism between two groups

G and H is precisely a group morphism from G to H.

Terms and formulas

We consider a fixed language L = C' U RU F, and a fixed set V the elements of which are called
variables.

Definition 1.9 (term) The set of L-terms is the smallest set containing the constant symbols, the
variables, and such that if f is a function symbol of L and ¢y, ...,t,
a term.

are terms, then fty---t,, is also

f f

Remarks. 1. An L-term is a finite word in the alphabet CUV U F.

2. Practically, an L-term is constructed inductively: one begins with variables and constant symbols
and apply function symbols. The complezxity c(t) of term ¢ is defined inductively as follows:
variables and constant symbols have complexity 0, and a term ft;---¢,, has complexity 1 +
max (c(t1), ..., c(tn;))-

3. A term is uniquely determined in the following sense: it is either a constant symbol, or a variable,
or written in a unique way as ft1 -ty (and only one of these 3 possibilities holds).

Notations. 1. If ¢t is a term and x1, ..., x, are distinct variables, we write t(x1,...,z,) to indicate
that all variables appearing in ¢ (but possibly more) are among z1,...,x,. Note that adding
variables in between the brackets does not alter the term.

2. We may add parentheses to ease the reading and often write f(t1,... ,tnf) for ft1---tn,. If
ny = 2, we also write (t1 ft2) (or even tto if there is no ambiguity on f) instead of ft1ts.

3. (substitution in a term) If ¢(x1,...,x,) is a term and ¢1,...,t, are terms, one defines the term
t((t1,...,tn)) inductively on ¢(t) by replacing in ¢ every occurence of x; by t;.

Example 1.10 In the language of rings, x +xy — z1 is a term (written also x(+(z,y), —(2,1))). For
ease of reading, we prefer to write it (x 4+ y) X (2 — 1), which requires the use of parentheses. Note for
instance that (x + y) + z and = + (y + z) are different terms (++xyz and +x+yz respectively).
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Definition 1.11 (atomic formula, formula) An atomic formula in the language L is an expression of
the form r(t1,...,t,,) where r isin R and t1, ..., t,, are L-terms. The set of L-formulas is the smallest
set containing all atomic formulas and such that

1. if ¢ is a formula, then — is also a formula;
2. if ¢ and ) are formulas, then Ay is a formula (written (¢ A ));
3. if  is a formula and x a variable, then Jx¢ is a formula.

Remarks. 1. An L-formula is a finite word in the alphabet L UV U {—,A,3}. — is called the
negation symbol, A the conjunction symbol and 3 the existential quantifier.

2. As the language contains equality, for every term t; and to, the expression t; = 2 is an atomic
formula.

3. (uniqueness of reading) An L-formula is of one (and only one) of the following forms: a (unique)
atomic formula r(t1,...,t,,), the negation —¢ of a (unique) formula ¢, the conjunction Apiy of
two unique formulas ¢ and v, or dxy for a unique variable z and formula ¢.

4. We have used the notation Ayt instead of the usual (¢ A 1)) to state the above uniqueness
result without having to cope with parentheses. From now on, we shall use the usual notation
with parentheses, and allow ourselves to add more parentheses around subformulas to ease the
reading.

5. As with terms, formulas are constructed inductively, starting from atomic formulas and taking
negations, conjunctions and existential quantifiers. The complexity c(p) of a formula ¢ is defined
inductively: it equals 0 for atomic formulas, 1+ ¢(¢) for (mp) and Jzp, and 1+ max(c(yp), c(v)))
for o A 1.

6. Jxp is a formula even if the variable z does not appear in .

7. As formulas are defined inductively, to show (or to define) that a given property P holds for every
formula, one shows (or defines) that P holds for atomic formulas (which may require another
induction on the complexity of terms); then one shows that if ¢ and ¢ satisfy P, then so do
p A, ~p and dze.

Notations. 1. If r is a binary relation symbol, we often write (zry) instead of r(x,y).
2. If ¢ and 1 are formulas, we use the abbreviations

VY, p—=1, and @<
respectively for —(—p A =), for ¥ V = and for (¢ — ¥) A (¢ — ¢). The symbol V is called the
disjunction symbol. —, A and V are called Boolean operations.
3. We also write Yz for ~dz—p. The symbol V is called the universal quantifier.

Remark. We could have introduced the symbols V and V earlier together with A and 3 directly in
the alphabet needed to build a formula. Our choice of the definition of a formula has the advantage of
simplifying many definitions and proofs, but the drawback of breaking the symmetry between A and
V on one hand, and 3 and V on the other hand, for instance in the definition of the complexity of a
formula.

Definition 1.12 (free variable, bounded variable) Let ¢ be a formula. The occurence of a variable in
© can be either bounded by a quantifier, or otherwise free (note that a variable can have both bounded
and free occurences). The precise definition is by induction on the complexity c(¢): if ¢ is atomic,
every variable occurence is free. If ¢ = =, the free occurences of a variable x in ¢ are the same as
the free occurences of x in ¢. If ¢ = 1)1 A 1), the free occurences of x in ¢ are the union of the free
occurences of x in ¥y and . If ¢ = Jx1), then every occurence of x in ¢ is bounded, and the freeness
of occurences of variables other than x in ¢ remains the same as in .

Example 1.13 In the language {<}, consider the formula (3z(z < y Az < 2)) Az < y: the variable
x has three bounded occurences and a free one; all the occurences of y and z are free.

Definition 1.14 (sentence) A sentence is a formula in which every occurence of every variable is
bounded.
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Notation. If ¢ is a formula and z1, ..., z, distinct variables, we shall write p(x1,...,x,) to indicate
that all variables having a free occurence in ¢ (but possibly more) are among x1,...,x,. Note that
adding additional variables in between the brackets does not alter the formula.

Definition 1.15 (substitution in a formula) Let ¢(x1,...,2,) be a formula, and let t1,...,t, be
terms. We define a formula ¢((t1,...,t,)) by replacing every free occurence of x; by t;.

Remark-Definition 1.16 (terms compatible with a formula) Note that if ¢)(y) is the formula Jz(x #
y), then ¥ ((x)) is the formula Jz(z # x). In order to avoid unrequired interactions between bounded
variables in ¢(z1,...,x,) and variables in the terms t1,...,t, replacing x1, ..., z,, one should apply
Definition 1.15 in the case when the variables occurences in tq,...,t, are free when being substituted
in ¢, that is when substitution does not change the number of bounded occurences of any variable.
In that case, we say that the terms ¢1,...,t, are compatible with ¢(z1,...,x,). For instance x is
not compatible with Jz(z # y), but it is comptible with 3z(z # y). Note that (z1,...,x,) are always
compatible with ¢(z1,...,x,).

Interpretation of a term, satisfaction of a formula

Let L be a fixed language. Until now, an L-term ¢ and an L-formula ¢ have been defined merely
as strings of characters. We now define their meaning in a given L-structure (M, LM).

Definition 1.17 (interpretation of a term at a) Let ¢(z1,...,2,) be an L-term and (ay,...,a,) el-
ements of M. The interpretation tM(ay,..., a,) of the term ¢ in M is an element of M defined
inductively on the complexity of ¢: if ¢ is a constant symbol ¢, then it is ¢™. If ¢ is a variable z;, then
it is a;. If t is ft1...t,,, then it is MM (ay,. .. an),. . M (a1,. .., a,)).

slng
Examples 1.18 1. In the language {+,e}, let t(x,y, z) be the term (z + y) + (z + €). Let a,b,c
be three elements of the structure (R, +,1). Then z(a,b,c) = a, y(a,b,c) = b and z(a,b,c) = ¢
hence (z + y)(a,b,c) = a+ b, so that t(a,b,c) equals a + b+ c+ 1.
2. Note that the interpretation in M of a term t(z1,...,z,) defines a function t¥ from M™ to M
that maps a to t™(@). For instance, in the language of rings, for the natural ring structure on
R, these functions are precisely the polynomial functions having coefficients in Z, the smallest
L, ing-substructure of R (exercise).

Lemma 1.19 (Substitution Lemma for terms) Let z be an n-tuple of variables, t(Z),t1(Z), ..., tn(Z)
terms and a in M™. Then one has

t((ty, ..., to)) (@) = tM (Y (a),...,tM(a)).

Remark. The Substitution Lemma is a practical tool that provides a natural writing of the interpre-
tation of a term of the form ¢((¢1,...,t,)) using the existing interpretation of the terms t,t1,..., 1,
instead of computing everything from the beginning. It is a kind of ‘divide and conquer’ algorithm.
If ¢t is the term f(x1,...,z,) for a function symbol f (hence has complexity 1), there is no point
in invoking the Substitution Lemma to interpret f((t1,...,%,)), which is simply f(¢1,...,t,), whose
interpretation is given by the inductive step of Definition 1.16; in that simple case, the Substitution
Lemma and the Definition provide the same writing: f(tM(a),...,tM(a)).

Proof. By induction on the complexity c(t). If ¢ is a variable x;, then ¢((¢1,...,t,)) is ¢; so one has
t((tr, - ta)M (@) = ti@) = M (¢ @), ...t (@)).

If ¢ is a constant symbol ¢, then both sides equal ¢M. If t is fs1(Z)- - - 8, (%), then ¢((t1,...,t,)) is the
term fs1((t1,...,tn)) - Sm((t1,...,tn)), so one has

t((t, .., to))M(@) = MM ((tr, .. ) @) - sM((t1, ..., t0))(@) (def. of interpretation)
= MMM (@), ... M) MM (a),...,t" (a)) (by induction hyp.)
=tMtM(a), ..., tM(a)). (def. of interpretation)

n
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O

Definition 1.20 (satisfaction of a formula at a) Let ¢(z) be a formula (z stands for (x1,...,x,))
and a = (ay,...,a,) in M"™. We define the fact that M satisfies ¢(a) inductively as follows:
1. If ¢ is the atomic formula 7 (¢1(Z), . . . , &, (Z)), then M satisfies (a) if and only if (¢} (a), ..., t} (a))
belongs to .
2. If ¢ is the formula ¢ A @2, then M satisfies p(a) if and only if M satisfies both ¢ (a) and p2(a).
. If ¢ is the formula =), then M satisfies p(a) if and only if M does not satisfy ¢ (a).
4. If ¢ is the formula Jyy(z,y), then M satisfies p(a) if and only if there exists b in M such that

M satisfies ¢ (a, b).

w

Notations. 1. We write M = ¢(a) when M satisfies p(a). For a sentence o, as there are no free

variables involved, satisfaction does not depend on the tuple a so we write M |= 0. Note that
M satisfies p(a) if and only if M satisfies the sentence ¢((a)) in the language L augmented with
n new constant symbols interpreted as ay,...,a,.

2. If p(x1,...,xy) is a formula, we write M = ¢ as an abbreviation for M |= Vz;---Vz,e and we
also say that M satisfies the formula .

3. If A is a set of formulas, we write M = A when M satisfies every formula in A, and we say that
M satisfies A. We usually write A for a set of formulas, and ¥ for a set of sentences.

Remarks. 1. One can check that M satisfies (1 V @2)(a) iff M satisfies ¢1(a) or ga(a), and that
M satisfies Yy (y, a) iff for every b in M, M satisfies 1(b, a).
2. By definition of M = —¢(a), one has either

M = p(a) or otherwise M | —¢(a).
Examples 1.21 1. In the language of orderings, the sentence
VaVyVz [((z <y AN y<z) s ax<2)A(z<)AN((e<yhy<z)—z=y)ANlze#y—>x<yVy<a)

holds in an L,,4-structure (M, <M ) if and only if <M s a linear ordering on M.
2. In the language of monoids, the sentence

VaVyVz [zy = yx A (zy)z = x(yz) A (3t(tr = e ANzt =€) Axe =x A ex = x]

holds in an L,-structure M if and only if M is an Abelian group (zy stands for z x y).
3. Let (M, x,~%,e) be a group considererd as a a structure in the language of groups, and let us
write [z, y] for 271y~ 12zy. Then the sentence

(FxFylz, y] # e) A (YaVyVz([z, y], z] =€)

holds in M if and only if M is a nilpotent group of class 2.
4. In the language of rings, let (M, +, x,—,0,1) be a ring. Then the sentence

VaVyVz(z # 0 — 3t(z + yt + 2t2 = 0))

holds in M if every polynomial of degree 2 with coefficients in M has a root in M (here, ¢? stands
for t x t; as we work in a ring, + is associative and we use the usual notations to simplify the
writing of the formula without any ambiguity about its interpretation in M).

Lemma 1.22 (Substitution Lemma for formulas) Let z be an n-tuple of variables, p(z) a formula,
t1(Z), ..., ty(Z) terms compatible with ¢ (i.e. the occurences of x1,...,x, in every t; are free when
substituted in ¢). Let a be an element of M™. Then one has

ME ot 1))@ < M E (] (@),....tY @).

Proof. If ¢; is z; for every 4, there is nothing to prove, so we assume that z1,...,z, have no
bounded occurence in ¢ and proceed by induction on the complexity ¢(p). If ¢ is an atomic for-
mula 7(s1(Z),...,s$m(Z)), then o((t1,...,t,)) is the formula 7r(s1((¢t1,...,tn)), -y Sm((t1,...,tn)))
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and we apply Lemma 1.19. If ¢ is the formula ¢1(Z) A p2(Z), then ((t1,...,t)) is ©1((t1,. .., tn)) A
wa((t1,...,t,)) and

M= p((ty, . ta))(@) = M ei((t, ... tn))(@) and M |= @o((t1, - .., tn))(a)
= M oi(t)(@),....t, (@) and M | po(t7(a), ... .ty (@)
= ME oty @),....t) (@)

The argument is similar when ¢ is —t). If ¢ is the formula Jyy (where ¢(y,Z) and y does not
appear among i, . .., Ty), then o((t1,...,t,)) is Jy(¥((y,t1,...,tn))) and the terms (y,t1,...,t,) are
compatible with ¥, so we have

M E o((t1,...,tn))(a) <= thereexists b€ M s.t. M = ¥((y,t1,...,tn))(b,a)  (by def. of )
<= there exists b € M s.t. M |= (b, t}(a),...,t¥(a)) (by induction)

— M E=otM(a),...,t"a)). (by def. of =)

O

Definition 1.23 (universal truth, logical equivalence) 1. A statement 1 is universally true if it is
satisfied by every L-structure. An L-formula ¢(z1,...,x,) is universally true if the statement

Vzy---Va,p is (note that this does not depend on the ordered list ).
2. Two formulas ¢ and ¢ are logically equivalent if the formula ¢ <> v is universally true.

Notation. If ¢ is a universally true formula, we write |= ¢ instead of {} |= ¢.

We shall be interested in the complexity of formulas up to logical equivalence, focusing particularly
on quantifiers. Here are the simplest forms.

Definition 1.24 (quantifier-free, existential, universal and prenex formulas)

1. A formula is quantifier-free if it is a Boolean combination of atomic formulas.

2. A formula is existential if it is of the form dz - - - Jx,¢ where @ is a quantifier free formula.

3. A formula is universal if it is of the form Vz; - - - Vx,¢ where ¢ is quantifier-free.

4. A formula is prenez if it is of the form Q121 - - - Qpzne where Qq, ..., Q, are quantifiers (3 or V)
and @ is a quantifier-free formula.

Exercises 1.25 1. Every formula is logically equivalent to a prenex formula.
2. Every universal formula is logically equivalent to the negation of an existential formula.

Theories, models, semantic consequences and satisfiability

Let L be a fixed language and M an L-structure.

Definition 1.26 (theory) A theory (or L-theory if the language is not obvious from the context) is a
set of sentences in the language L.

Definition 1.27 (theory of a structure) The theory of M is the set of all L-sentences satisfied by M.
Notation. We write Th(M) or 3(M) for the theory of M.

Definition 1.28 (model of a theory) Let X be a theory. We say that M is a model of ¥ if M satisfies
every sentence of X.

Definition 1.29 (semantic consequence) Let A be a set of formulas. If every structure that satisfies
A also satisfies the formula ¢, we say that ¢ is a semantic consequence of A and we write A = .

Definition 1.30 (satisfiability) A set of L-formulas is satisfiable if it is satisfied by some L-structure.

Remark 1.31 (link between satisfiability and semantic consequence) For a sentence o, one has A =
o if and only if AU {—0o} is not satisfiable.
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CHAPTER 2

SEMANTIC CONSEQUENCE, SYNTACTIC CONSEQUENCE
AND THE COMPLETENESS THEOREM

The notion of satisfaction of a sentence o in a structure M, using the interpretation of the language
in M, provides a notion of semantic consequence (i.e. related to the meaning of sentences): we write
Y | o if, given a set of sentences X, every structure that satisfies 3 also satisfies the sentence o. In this
Chapter, we define a notion of syntactic consequence (i.e. related to general deduction rules between
sentences, regardless of their possible interpretations in a particular structure): we shall write ¥ F o if
there is a formal proof of o from the axiom system Y. Godel’s Completeness Theorem (Theorem 2.24)
asserts that these two notions of consequence actually coincide.

Logical axioms: tautologies, equality axioms and 3 axioms.

We fix a given language L and introduce the logical axioms that will be used to define formal proofs.
These axioms are of three kinds: tautologies, equality axioms and existential quantifier axioms.

Definition 2.1 (formula of sentential logic) Let S be a countable set whose elements are called sen-
tential variables a1, as, . ... The set of sentential formulas is the smallest set containing the sentential
variables and such that if B and C are sentential formulas, then ABC' (written B A C) and =B are
also sentential formulas.

A sentential formula is a finite word in the alphabet S U {—, A} (from which we define the symbols
V, — and <), constructed inductively: one begins with sentential formulas and apply A and —. The
complexity c(A) of a sentential formula is defined inductively: it is O for variables, 1+ ¢(A) for = A and
1 + max(c(A),c(B)) for AN B. We write A(ay,...,ay,) for a sentential formula where the sentential
variables appearing in A are among a1, ..., a,. Sentential variables are thought of as sentences having
truth value either O or 1.

Definition 2.2 (truth function of a sentential formula) To every sentential formula A is associated a
truth function fa from {0,1}N to {0,1} that maps a choice (t1,t2,...) for the truth values of all the
sentential variables (a1, a9, ...) of S to a truth value f4(¢1,to,...) of A. The values of f4 are defined
inductively on the complexity of A: if A is a sentential variable a,, then fa(t1,...,tn,...) =1 if and
only if t, = 1. If Ais =B, then f4 =1— fp. If Ais BAC, then fa = fgfc.

Definition 2.3 (sentential tautology) A sentential formula A is a tautology if fa = 1.

Exercise 2.4 If A and B are sentential formulas, compute favp, fap and fa..p and show that
AV-A, A— (B— A),(ANB) — Aand (A — B) <> (-B — —A) are tautologies.

Given a sentential formula A(ay,...,a,) and L-formulas ¢1(Z), ..., ¢n(Z), we define A(p1,...,¢n)
by replacing in A every occurence of a; by ¢;(z). This is an L-formula in free variables among z,
hence written A(¢1,...,¢n)(Z), and one can show by induction on the complexity of A that for every
L-structure M and a in M,

(1) M A(pr,- - pn)@) = falel' (@), on' (@) = 1,
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where M (a) is the truth value of ¢(a) in M, defined by
M@ =1 M = p(@), o ¢M(@)=0if M o(a)

Definition 2.5 (L-tautology) An L-tautology is an L-formula of the form A(y1,...,¢y) obtained
from a sentential tautology A(ai,...,a,). For instance, if ¢ and 1 are L-formulas, then ¢ V =y,
o — (Y = ¢) and (p A1) — ¢ are L-tautologies.

Lemma 2.6 An L-tautology is universally true.

Proof. Use (1). O

Definition 2.7 (equality axioms) The following sentences are called equality azioms in L.
1. Va(z = x),
2. VaVylze =y » y =),
3. VaVy(z =y — f(x) = f(y)) for every function f symbol in L.
4. VVy[(z =y Ar(x)) — r(y)] for every relation symbol r in L.

Remark. Transitivity of equality follows from 4. applied to the relation symbol =.
Lemma 2.8 FEquality axioms are universally true.

Proof. Immediate from the assumption that = is always interpreted by usual equality. O

Definition 2.9 (existential quantifier axioms) The existential quantifier axioms are sentences of the
form Jx1) > Jr——1) where 1 is a formula, or of the form ¢((¢, zo, ..., z,)) = Jzr1p where p(z1, ..., 2,)
is a formula and t(x1,...,z,) a term such that the terms ¢, zo, ..., z, are compatible with ¢.

Lemma 2.10 Ezistential quantifier axioms are universally true.

Proof. All the formulas involved are in free variables among z. If M = o((t,x2,...,2,))(a) holds
for some L-structure M and @ = (a1,...,a,) in M, then one has M = ¢(t"(a),as,...,a,) by the
Substitution Lemma for formulas, so one has M = (Jz1¢)(a). O

Deduction rules: modus ponens and generalisation rule

Definition 2.11 (deduction by modus ponens) Let ¢1,p2 and 1 be formulas. We say that 1) is de-
duced by modus ponens from p1 and po if s is the formula o1 — .

Definition 2.12 (deduction by generalisation) Let ¢ and 1 be formulas. We say that v is deduced
by generalisation from ¢ if ¢ is of the form ¢; — o and 9 is the form ¢y — Vo for two formulas
1 and @9 and some variable x that has no free occurence in ;.

Formal proofs, syntactic consequences and coherence

Definition 2.13 (formal proof) Let A be a set of formulas, and ¢ a formula. A formal proof of ¢
from A is a finite sequence of formulas ¢1, ..., @, where ¢, is ¢ and such that for all k < n, either o
is in A, or @y, is a logical axiom, or ¢y, is deduced by modus ponens from two formulas ¢; and ¢; with
i <k and j <k, or ¢y, is deduced by generalisation from ¢; with ¢ < k. In that case, we say that A
proves .

Remarks. 1. ¢(Z) can have free variables z. From the generalisation rule, it follows that if there
is a formal proof of ¢ from A, then A actually proves Vzy (see exercise 2.15).
2. Reciprocally, if A proves a formula Vg, then A also proves ¢ (see exercise 2.15).
3. As every proof involves finitely many formulas, if A proves o, then there is a finite subset Ag C A
such that Ag proves .
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Definition 2.14 (syntactic consequence) If there is a formal proof of ¢ from A, we say that ¢ is a
syntactic consequence of A, and we write A I .

Notations. We write - ¢ instead of {} I ¢, meaning that every set of formulas proves ¢. If A; and
Ao are two sets of formulas, we write A1 F As if Ay F 9 for every g € As.

Exercise 2.15 Let ¢1,...,vn, ¢ and ¢ be formulas and A a set of formulas, possibly empty.

1. (conjunction) If A+ {p1,...,¢on}, then A @1 A+ A gy

2. (contrapositive) A - ¢ — 1 if and only if A F =t — —p.

3. (universal quantifier axiom) F Vzip — ¢((t,z2,...,2y)) where @(x1,...,2y), t is a term and
(t,z2,...,x,) are compatible with .

4. (V rule) A+ ¢ if and only if A - Vxep.

5. (introduction of 3) If = has no free occurence in 1) and A F ¢ — 9, then A + Jzp — 1.
Theorem 2.16 (a syntactic consequence is a semantic one) If A F ¢, then A = .

Proof. Inductively on the length n of the proof. If n = 1, then ¢ is either in A, or a logical axiom,
hence universally true by Lemmas 2.6, 2.8 and 2.10. In both cases, A = ¢. Assume that ¢1,...,¢n1
are semantic consequences of A. If ¢, is deduced by modus ponens from ¢; and ¢; = ¢; — ¢, and if
M is a model of A, then M = ¢; and M = ¢j, so M |= ¢,. If ¢, is deduced by the generalisation
rule, it is of the form a — V8 with M E « — (3, hence M | Vz(a — (). Since z has no free
occurence in «, one has M E a — Vzp. ]

Definition 2.17 (coherence) A set of formulas A is contradictory if there is a formula ¢ such that
AF ¢ and A F —p. Otherwise, it is coherent®).

Remarks. 1. If A is contradictory, then A proves all formulas (use the tautology A — (A — B)).
2. If A is contradictory, there is a finite subset Ag C A which is contradictory. In particular, A is
coherent if and only if every finite subset of A is coherent.
3. The notion of coherence is syntactic. The corresponding semantic notion is satisfiability. A set A
of formulas that is satisfiable is coherent, for otherwise it would prove Jz(x # x), so any model
M of A would satisfy Jz(z # x) by Theorem 2.16.

Lemma 2.18 (Deduction Lemma) If A is a set of formulas, ¢ a formula and o a sentence, then
AU{o}Fo ifandonlyif AFo— .

Proof. If A proves o — ¢, then A U {o} also does, so AU {o} proves ¢ by modus ponens. For the
reverse implication, let ¢1,..., ¢, be a proof of ¢ from AU {o}. We show by induction on n that A
proves 0 — ; for every i. If n = 1, then ¢ is either ¢ or in A or a logical axiom. In the first case,
the result follows from the tautology ¢ — . In the two last cases, one has A F 1, as well as the
tautology ¢1 — (¢ — ¢1), from which A - ¢ — ¢1. Induction step: if ¢, is a logical axiom or in
AU {o}, we conclude as before. If ¢, is deduced by modus ponens from ¢; and ¢; = ¢; = ¢, then
AFo— ¢;and A+ o — (p; = ). Using the tautology ((A — B)A (A — (B — C))) — (A— O),
it follows that A + 0 — ¢,. If ¢, is deduced by generalisation, it is of the form o — Vz/3, and we
have A - 0 — (o — ) by the induction hypothesis, that is A+ o Aa — 3, hence A+ o A a — Va3
by generalisation (since x has no free occurence in either o or a), that is A - o — (v — Va3). O

Here is the syntactic analogue to Remark 1.31.

Corollary 2.19 (link between coherence and syntactic consequence) Let A be a set of formulas, and
o a sentence. A proves o if and only if AU {—o} is contradictory.

Proof. If A proves o, then so does A U {—0c}, so AU {—o} is contradictory. Reciprocally, if A U {-o}
is contradictory, then A U {—c} proves every formula and in particular o, so A proves =o — o by the
Deduction Lemma. From the tautology (wA — A) — A, one deduces that A proves o. O

W Margaret Thomas made me realise that the wording cohérent/contradictoire is a French convention, whereas the
English one is consistent/inconsistent. Since I unfortunately began to use coherent/contradictory, I shall keep this
wording for sake of consistency.
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A coherent theory has a model

Let L be a fixed language and X an L-theory. If 3 has a model M, then ¥ is coherent. The purpose
of this section is to show the converse: a coherent theory has a model.

Definition 2.20 (Henkin witnesses of a theory) If C is a set of constant symbols of L, we say that
C' is a set of Henkin witnesses for ¥ if, for all formulas ¢(x) (with at most one free variable z), there
is some c in C such that ¥ proves Jxp — ¢((c)).

We shall show

1. that adding constant symbols in the language L does not affect the coherence of X,

2. if 3 is coherent, how to build a coherent L U C-theory ¥¢ containing 3 such that C' is a set of
Henkin witnesses for 3¢,

3. how to build a model of ¥ using the constants in C.

We will restrict to the case where L is a countable language and the set of variables V' is countable.

Lemma 2.21 (adding one constant symbol does not affect coherence) Let p(z) be an L-formula and
¢ a constant symbol that is not in L. If ¥+ ¢((c¢)) in LU {c}, then ¥+ ¢ in L.

Proof. Let ¢1,...,¢, be an L U {c}-proof of ¢((c)) from X. Let y be a variable that does not appear
in any ¢;, and let ¢; be obtained from ¢; by replacing any occurence of ¢ by y. For each k < n, if
@k is a logical axiom in L U {c} (tautology, equality axiom, existential quantifier axiom), then 1y is
a logical axiom in L of the same kind. If ¢} is deduced by modus ponens from ¢; and ¢;, then vy,
is deduced by modus ponens from 1; and ;. If ¢, is o — ¥z with ¢; equal to the formula o — 3,
then vy, is v — Vzd with ¢; equal to the formula v — §. It follows that 1, ..., 1, is an L-proof of i,
from 3. But 1, is ¢((y)), so ¥ F Vye((y)) by Exercise 2.15.4. As z is compatible with ¢((y))(y) and
as ¢((v))((z)) is precisely ¢, one has ¥ - ¢ by Exercise 2.15.3. O

Corollary 2.22 If > is a coherent L-theory, it is a coherent LU C-theory for any set C' of constants.

Proof. If 3 is contradictory as an L U C-theory, then there are finitely many constants cy,...,c, in
C' such that ¥ is contradictory as an L U {cy,. .., ¢, }-theory (and we may choose n minimal as ¥ is a
coherent L-theory). It follows that ¥ proves any L U {ci,..., ¢, }-formula, and in particular ¢((c,))
where p(z) is  # x. By the previous Lemma, 3 proves x # z in the language L U {c1,...,cn-1},
hence is contradictory, a contradiction to n being minimal. O

Lemma 2.23 (Henkin’s completion) Let 3 be a coherent L-theory and C' a countable set of constant
symbols. There exists an L U C-theory ¢ that is coherent and contains X, such that C' is a set of
Henkin witnesses for Xc.

Proof. Let (¢p)n>1 be an enumeration of C. As LUC and V are countable, the set of L U C-formulas
is also countable, so let (¢p)n>1 be an enumeration of those L U C-formulas having at most one free
variable. Relabelling the variables, we may write z,, for the free variable of ¢, if it exists, or pick
any variable in V' that we write x,, otherwise, so that one can write ¢, (z,). We build a theory %,
inductively starting with ¥y = ¥ and setting

Y1 = En U {Fn@n = @nl(cpm)))}

where f(n) is the smallest natural number such that ¢ (n) appears in none of the finitely many formulas
of 3, \ ¥ that use constant symbols of C. We then define X¢ to be |J,»; X,,. The theory ¥¢ contains
>} and has C as a set of Henkin witnesses by construction. We claim that ¥ is coherent, that is, that
Y, is a coherent L U C-theory for every n by induction on n. It is true for n = 0 by Corollary 2.22.
If 3,41 is contradictory, then one has

X _‘(Hxn@n — @n((cf(n))))7
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hence
Y F 3znpn A _‘(Pn(<cf(n)))7
and, by Lemma 2.21
Y b Jznen AV, —on(zy),
that is
Y b 3xnen A 2Jzn,en (),

so, using the existential quantifier axiom, 3, proves 3z, @, A =32, pn(2,) and is contradictory. ]

Completeness theorem 2.24 (Godel, 1930) Let 3 be a theory in a countable language L (using a
countable set of variables). The theory 3 is coherent if and only if it has a model.

Proof. By Lemma 2.23, there is a countable language Ly O L and a coherent Lp-theory Yo D X
such that the set of all constant symbols C of Ly is a set of Henkin witnesses for ¥¢. We first build
a maximal theory with these properties. Let (0,,),>1 be an enumeration of all the Lg-sentences. We
define ¥, by induction on n by putting 3¢ = X and

Yt1 =X, U{op} if 3, U {0y} is coherent, or ¥, 41 = X, U {—0,} otherwise.

Note that if %, is coherent and ¥,, U {0}, } is contradictory, then ¥, - -0y, so ¥, U {—0,} is coherent.
It follows that 3,41 is coherent. Putting Xp = U >, one has
n=>0
(1) X g is a coherent Lp-theory,
(2) Xy contains ¥, hence has C as a set of Henkin witnesses,
(3) X g is complete, i.e. for all Ly-sentence o, either o or o isin Xy (so 0 € XLy iff Xy F o).

Note that if ¢ is a constant symbol, then ¥ proves Jz(z = ¢), so there must exist a constant symbol
d different from ¢ by construction (see Lemma 2.23) such that Xy proves d = c¢. We define the relation
~ on C by

c~d < c=de€Xy.

Claim 1 ~ is an equivalence relation on the set C of constant symbols.

Proof of Claim 1. (reflexivity) If ¢ = ¢ is not in Xy, then ¢ # c is, by (2.4). But then Xy proves
Jxz(x # x) by the existential quantifier axiom, a contradiction with the first equality axiom.
(symmetry) If ¢ = d is in Xy but not d = ¢, then d # ¢ hence (¢ = d) A (d # ¢) are in Xy, a
contradiction with the second equality axiom.

(transitiviy) Similary using the fourth equality axiom and the Remark after Definition 2.7. O

Claim 2 C/ ~ is an Ly-structure.

Proof of Claim 2. We write M for C/ ~ and for every ¢ in C, we write ¢ for the class of ¢ modulo ~.
We define

M=c¢
For every n-ary relation symbol r, we define,

M

(C1y...,Cp) €T <= r(c1,...,Cn) € Xp.

This is well-defined since if ¢; ~ dy, ..., ¢, ~ d, and r(c1,...,¢,) € Xy hold, then the fourth equality
axiom implies 7(dy, . ..,d,) € g, so that the definition of 7™ does not depend on the choice of repre-
sentatives ci, ..., c, for the classes ¢1,...,¢,. Note that for the relation symbol =, the interpretation
=M coincide with equality on M. If f is an m-ary function symbol, then for all constant symbols
Cl,---,Cm, the sentence 3z f(cy,...,¢n) =z is in Xy (by the first equality axiom and the existential
quantifier axiom), so there is a constant symbol ¢ such that the sentence f(ci,...,cn) = cis in Xy
(and the sentence f(dy,...,dy,) =d is in X for all d; ~ ¢; and d ~ ¢ by the third equality axiom).
We thus define

fM(él,...,ém):J — f(Cl,...,Cm):dEZH.
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Claim 3 (interpretation of a term) Let ¢t be a term and ¢ a constant symbol. Then
MEt=c < t=ceXy.

Proof of Claim 3. By induction on the complexity ¢(¢). It is true for constants by definition of ~, and
if ¢ is the term ft;---t,, by (2) there exist constant symbols ¢y, ..., ¢, such that t; = ¢; € X for all

i, so that we have tM = ¢M by the induction hypothesis. It follows that
MEt=c < fMt{W---tI])W =M = ch{V[---ci‘,/[:cM < f(c1,...,¢p) =c€ Xp.

By the third equality axiom, one has f(ci,...,¢p) =c € ¥y if and only if f(t1,...,tp)) =c€ Xy. O

Claim 4 (satisfaction of a sentence) For a sentence o, one has

M):0<:>O'€ZH.

Proof of Claim 4. By induction on the complexity of o. If r(t1,...,%,) is an atomic sentence and
c1,...,Cy are constant symbols such that ¢; = ¢; € ¥ g for every i, then tf” = cﬁ‘/l by Claim 3, so
MEr(ty,.. ty) <= . e —= (... MerM —= r(c,...,c0) €.

By the fourth equality axiom, r(c1,...,¢,) € Xy if and only if r(t1,...,t,) € Xg.
If o is the sentence a A 3, then

MEaNp <= MEaand M Ef < acXgand € Xy = aApEXy.

Since X p is complete, the converse of the last implication also holds.
If o is —a, the result holds again by completeness of Y.
If 0 is Jza for a formula a(z) of lower complexity, then

M = o0 <= there exists ¢ € M such that a((c)) € Xpy.

By the existential quantifier axiom and modus ponens, this implies dxa € X g. Conversely, if dza €
Y5, then there is a constant symbol ¢ such that a((c)) € Xy by (2) and modus ponens. O

Claim 5 The L-theory % has a model.

Proof of Claim 5. By the previous Claim, M is an L-structure that is a model of ¥. As L C Ly,
the restriction LM of L]\H/[ to the language L provides a natural interpretation for L in M. As ¥ C Xy,
the structure (M, LM) is a model of X. O O

Remarks. 1. This shows in particular that ¥ |= o if and only iff ¥ F o.

2. We have shown that ¥ has a model M that embeds into N, i.e. that is countable. In particular,
the L f;eiq-theory of the real numbers R with its natural structure has a countable model F that
satisfies all the L f;.iq4-sentences satisfied by R.

3. (The hypotheses ‘L and V are countable’ can be removed assuming the Aziom of Choice, one of
whose equivalent formulations asserts that any set can be well ordered: under this assumption,
instead of enumerating formulas (¢, ),>1 and building the theories ¥,, inductively on the natural
number n as is done in Lemma 2.23 and Theorem 2.24, one chooses a well-ordering (pq)a>1 on
the set of formulas and builds ¥, by transfinite induction (see Chapter 4).)

Corollary 2.25 (Compactness Theorem) Let L be a countable language, and ¥ a theory using count-
ably many variables. Then % has a model if and only if every finite subset X9 C X has a model.

Proof. If M is a model of 3, then M is also a model of every (finite) subset of ¥.. The converse is the
important direction. One has
> has a model <= ¥ is coherent
<= every finite subset of ¥ is coherent
<= every finite subset of ¥ has a model. [
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Remark. The Compactness Theorem is a semantic corollary of the Completeness Theorem.

Corollary 2.26 Let L be a countable language and ¥ a theory using countably many variables. If 3
has finite models of arbitrary large cardinalities, then ¥ has an infinite model.

Proof. For every natural number n > 1, let M,, be a model of ¥ having size at least n. Let C = {¢, :
n > 1} be a set of new constant symbols and let L = LU C. Let

Y=Y U{cy # cm i n #m}.
If ¥y C ¥ is a finite subset, then there is a natural number k and a finite Xo C X of size at most k
such that Xo C SgU{c, # cm i n # m, n,m < k}. If follows that M, is a model of X in the language
L (one interprets the constants {c, : n < k} by pairwise distinct elements of M} and the constants
{¢n :n > k} by any element for n > k). As this holds for any finite subset ¥y C ¥, the theory X has

a model (M, L™) by Corollary 2.25. M must be infinite since the interpretations of the constants of
C' are pairwise disjoint, and M is also a model of X. O

We finish by giving an explanation for the name of the Compactness Theorem 2.25. Let L be a
language and Sy, (or simply S) the space of complete satisfiable L-theories using variables in V' (recall
that 3 is complete if for all L-sentence o, either o or = is in ). We provide S with a topology by
defining a basis of open sets. For any L-sentence o, we define the basic open set [o] by

[0}:{268:062}.
For any two L-sentences o and 7, using completeness and satisfiability of any ¥ € S, one has
[a]ﬂ[T]:{EGS:JEEandTEE}:{ZES:J/\TGE}:[U/\T].

It follows that the set of basic open sets is closed under finite intersections and does form a basis of
open sets. By definition, an open subset of S is of the form (J,cx[o] for any set ¥ of L-sentences.
Also, using the completeness of any ¥ € S again, one has

S\[U]:{EES:U%Z}:{EES:—UEE}:[—\a].

It follows that any basic open set [o] is clopen (i.e. both closed and open) and that a closed subset of
S is of the form (,¢x[o] for any set ¥ of L-sentences. We write S(X) this closed subset, which is the
subset of S whose elements contain 3.

Remark. With these notations, an L-theory ¥ is satisfiable if and only if S(X) is not empty.

Proof. If S(X) is not empty, there is a satisfiable theory that contains X, so X is satisfiable. If ¥ has
a model M, then Th(M) is a complete satisfiable theory that contains ¥ hence belongs to S(X) . O

Corollary 2.27 If L and V are countable, S is a compact Hausdorff topological space.

Proof. If ¥; and X9 are two distinct elements of S, there must be a sentence o in ¥; \ Xo. As
Y9 is complete, one has =0 € Xj, so that [¢] and [—o] are disjoint neighbourhoods of ¥; and ¥
respectively. This shows that S is Hausdorff. To show that S is compact, let ,ex[o] = S(X) be
an empty intersection of closed sets. By the above remark, ¥ is not satisfiable. By the Compactness
Theorem, there is a finite subset Yo C X that is not satisfiable, so that (N, ¢y, [o] is empty. O]

Remarks. 1. An example. In the language of fields L4, the space Si .., is a set, some elements
of which are: the theory of the field Q of rationals, the theory of R, the theory of the field C of
complex numbers, the theory of the finite field F,» for every n etc.

2. §(X) is a closed subset of S hence compact for the induced topology.

3. One could have similarly defined a topology on the space of coherent complete L-theories and
showed this space to be compact Hausdorff using the simple fact that a contradictory theory
has a contradictory finite subset (without invoking Gédel’s Completeness Theorem). Godel’s
Completeness Theorem asserts that this latter topological space coincides with the former space
S of satisfiable complete theories.
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CHAPTER 3

THE COMPACTNESS THEOREM

The Compactness Theorem states that a countable theory X has a model provided that every finite
subset ¥y C ¥ has a model My,,. It is a semantic theorem that we derived from the Completeness
Theorem using the fact that a formal proof involves only finitely many formulas. We shall construct
a model of ¥ built by an wultraproduct of the models Msy,,, the ultraproduct construction being an
important tool to build a structure M out of a family of structures M; by controlling the theory of
M in terms of the theories of M;. This will provide another proof of the Compactness Theorem that
does not rely on the syntactic notions defined in Chapter 2.

Filter, ultrafilter

Definition 3.1 (filter) Let I be a set. A filter on I is a non-empty set F consisting of subsets of I
such that

1. the empty set is not an element of F,
2. (finite intersection property) if J and K are in F, then so is J N K,
3. (extension property) if J is in F, then so is any bigger K D J.

Remark. These are properties that one would expect from very large subsets of I.

Definition 3.2 (generated filter) Let I be a set and A a set of subsets of I. If, for all finitely many
Aq,..., A, in A, the intersection A; N---N A, is non-empty, then the set of all B C I such that there
exists n and Aq,..., A, in A with A;N---N A, C B is a filter on I called the filter generated by A.

Examples 3.3 1. (trivial filters) For any non-empty subset J C I, the set singleton {J} generates
a filter. The filters of this kind are called the principal filters on I, or the trivial ones.

2. (Fréchet filter) For any infinite set I, the set of cofinite subsets of I (those whose complement
in I is finite) is called the Fréchet filter on I.

3. (filter of neighbourhoods) Let X be a topological space and z a point of X. A subset V of X is
called a neighbourhood of x if there exists an open set O that contains x such that O C V. The
set V(x) of neighbourhoods of z is a filter on X. If the topology on X is generated by a basis of
open sets B, then V(x) is generated by those elements of B that contain x.

4. (filter of conegligible sets) Let X be a set, A an algebra of subsets of X (i.e. closed under finite
intersections and taking complements) and p a non-zero finitely additive measure on (X, .A).
That is, 4 is a map from A to [0, +oo] such that (@) is zero and

w(AU B) = u(A) + u(B) for all pairwise disjoint A and B in A.

An element A of A has comeasure zero if (X \ A) is zero. A subset B C X is conegligible if
there exists an A € A having comeasure zero such that A C B. The set of elements of A having
comeasure zero is closed under finite intersections and does not contain the empty set as u is
non zero, hence generates a filter on X that corresponds to all conegligible subsets of X. In
particular, if (X, B, u) is a complete measure space, the conegligible elements of B form a filter
on X.
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Definition 3.4 (ultrafilter) An ultrafilter U on I is a filter that is maximal for inclusion.

Lemma 3.5 (characterisation of ultrafilters) Let F be a filter on I. F is an ultrafilter if and only if
for every subset J C I, either J or its complement I\ J belongs to F

Proof. Assume that for every J C I either J or I\ J belongs to F. Let ' O F be a filter on I and
let Je F.If I\ Jisin F,then JN(I\J) isin F, a contradiction. So J is in F and F is maximal.
Conversely, if F is an ultrafilter, let J C I. If I\ J is not in F (in particular J is not empty), then
we claim that A = F U {J} generates a filter: as F is closed under finite intersection, it is enough to
show that F N J is non-empty for any F in F. But if FNJ =0, then F C I\ J,so I\ Jisin F, a
contradiction. We have shown that F U {J} generates a filter, so J is in F by maximality of 7. [

Example 3.6 The filter generated by a singleton {x} of I is a principal ultrafilter. Reciprocally,
every principal ultrafilter is generated by a singleton.

Remark. An ultrafilter i induces a measure p on the (o-)algebra of all subsets of X defined for every
Y C X by putting
wY)=1ifYeldoru(Y)=0if Y ¢ U.

Lemma 3.7 (characterisation of non-trivial ultrafilters) Let I be an infinite set and U an ultrafilter
on I. U is non-principal if and only if it contains all cofinite subsets of I.

Proof. If U contains all cofinite subsets of I, it cannot be principal for otherwise it would contain a
singleton {x} (the generating set), but also its cofinite complement X \ {z}, hence the empty set, a
contradiction. If I/ is non-principal, ¢ does not contain any singleton so U contains the complement
of any singleton by Lemma 3.5, hence any finite intersection of such sets, that is, any cofinite set. [

Lemma 3.8 (obtainment of ultrafilters) Every filter F on I can be extended to an ultrafilter on I.

Proof. Let C be the set of all filters on I extending F. Together with inclusion, C is a partially ordered
set. We shall use Zorn’s Lemma, one of the equivalent formulations of the Axiom of Choice, to show
that C has a maximal element.

Zorn’s Lemma 3.9 Any non-empty partially ordered set C that is inductive (that is,
each of whose totally ordered subset has an upper bound in C) has a mazimal element.

Let § = {F; : j € J} be a totally ordered subset of C. We write F; for Ujes Fj and claim that
Fj is an upper bound of § in C. The set F; is a set of subsets of I, contains all the elements of F,
and of F; for every j € J, does not contain the empty set (for otherwise one F; would contain it)
and satisfies the extension property (for any element of F; belongs to a given Fj that satisfies the
extension property). If A and B are elements of F;, say A € F; and B € Fy, as § is totally ordered,
one has for example F; C Fj, so that AN B € Fj, hence AN B € F;. This shows that F; is a filter
on J extending F and all elements of §. By Zorn’s Lemma, C has a maximal element, which is an
ultrafilter extending F. O

Remark. This extension is hardly ever unique. Choosing one is choosing a precise notion of a ‘very
large’ subset of I.

Cartesian product, reduced product, ultraproduct

Definition 3.10 (Cartesian product of structures) Let (M;);er be a family of L-structures. The prod-
uct of (M;);cr is the L-structure (M, L™) such that

1. M= Hi M,
2. M = (eMi);c; for every constant symbol c,
3. fM (al, e a”) = (fMi (al,... ,a?))ie[ for every n-ary function symbol f and a',...,a" in 1_[Z M;,



3. CARTESIAN PRODUCT, REDUCED PRODUCT, ULTRAPRODUCT 25

4. (at,...;a") e M «—= ((a1 .,a?) € rMi for all i in I), for all n-ary relation symbol r in R

7

and for all a',...,a" in 1_‘[Z M;.

Remarks. 1. If there exists a constant symbol ¢ in L, then 1_[Z M; is non-empty: being given the

family (M;);er, we are also given the family (¢M);c;. In general though, and in the case where

the index set [ is infinite, one may need the Axiom of Choice to ensure that 1_[Z M; is non-empty.
2. For the equality symbol, one has (a;)ic; =™ (b;)ies if and only if a; =i b; for all i € I, so =M
is the usual equality in Hz M;.

3. For every coordinate g, the igth projection Hl M; — M;, is a morphism.

Example 3.11 Let us consider R as an L,g,-structure. The L,g,-structure on R™ is obtained by
interpreting eg as (0,...,0), + as coordinatewise addition, — as coordinatewise inverse, and < as
(a1,...,a,) <B" (by,...,b,) if and only if a; <® b; for all i. Similarly for the infinite product RN,

Lemma 3.12 (equivalence relation induced by a filter) Let (M;)ier be a family of L-structures, F a
filter on I and let ~Fx be the relation on H, M; defined by

(ai)ig ~F (bi)ie] <~ {Z el:a = bz} e F.

Then ~x is an equivalence relation that is compatible with any n-ary function f™ and n-ary relation
M that is,

the equivalences a' ~r bt ... a" ~rb" imply fM(al, N I fM(bl, 0", and
al ~z bl am~E b imply {iel:(al,...a)erMiYeF —= {iel:b},.. .00 erMi}eF.
We write 1_[]E M; for the quotient space modulo ~x, and ar for the equivalence class of any a € 1_[z M;.
Proof. As I belongs to F, the relation ~r is reflexive. Symmetry follows from symmetry of equality.
If a ~r band b ~x ¢, one has

{iEI:ai:b,}ﬂ{iEI:bi:ci}C{iEI:ai:ci}, hence {iEI:ai:ci}Ef,

so a ~r ¢, and ~r is transitive.
If a' ~7 bt ..., a" ~F7 b", one has

{ier:al=blyn-n{icrar =t} clicl: fMa,....a) = F @} ....b01)} € F,

so fM(al,...,a") ~x fM(bL,...,b"). Similarly, one has

lier:al=bl}n-nlicrap=pfn{icr:(af,...,apyer™} c{icr: @},....0p) er’},

i
which proves the last statement. O
Remark. If F is the Fréchet filter on an infinite set I, the relation a ~x b holds if and only if a; = b;

for all but finitely many ¢ in I. In the case where U is an ultrafilter on I, the relation a ~;; b holds if
and only if a; = b; holds for almost every i in I (relatively to the measure ).

Definition 3.13 (reduced product of structures) Let (M;);c; be a family of L-structures, M their
product, and F a filter on I. The reduced product of (M;);cr is the L-structure (M, LM7) such that

1. Mr= H; M,

2. Mr = (CM>]__ = ((cMi)Z-GI)]_. for every constant symbol c,

M;( 1 n) — ( M1 n ) _ : 1 n; .
3. f ar,...,a'r M a,...;a") ]__foreverynaryfunctlonsymbolanda,...,a mHiMZ,
4. (ak,...,a%) e rMr = {z €l:(a},...,a0) € rMi} € F for every n-ary relation symbol r.

In the particular case where all the structures M; are equal to N, one writes N7 instead of HF N,
and call N a reduced power of N.



3.3

26 CHAPTER 3. THE COMPACTNESS THEOREM

Remarks. 1. By Lemma 3.12, the definitions of fM7(ak,...,a%) and r™7(ak,... ,a%) do not
depend on the choice of a representative for every ajf, so Mr is well-defined.

2. The projection HZ M; — H]__ M; is an L-morphism.
3. If F is the trivial filter {I}, then ~r is equality on Hz M; so H]__ M; equals 1_[Z M;.
4. If F is a principal filter generated by {J} for some J C I, then H; M, is isomorphic to H]EJ M;.
In particular, for the filter F;, generated by the point {io}, HF M; is isomorphic to M;,
0
(exercise).

Exercise 3.14 (An example: reduced product of rings) Consider R with its L,;ng-structure again.
The Lying-structure RN is the natural ring structure on the Cartesian power of R. Let F be a filter
on N. Show that there is an ideal I of RN such that the reduced power R” is precisely the quotient
ring RN /I. Show that if F is an ultrafilter, then the ideal I is maximal. Conversely, show that for
every ideal T of RN, there is a filter F on N such that RN /I equals R”.

Definition 3.15 (ultraproduct of structures) Let (M;);er be a family of L-structures, M their prod-
uct, and U an ultrafilter on I. The structure Hu M; is called the wltraproduct of (M;)icr. In the

particular case where every M; equals N, the structure N¥ is called an ultrapower of N.

Satisfaction in an ultraproduct

Yos’ Theorem 3.16 (satifaction in an ultraproduct) Let (M;);cs be a family of L-structures, M their
product, U an ultrafilter on I and My the ultraproduct Hu M;.

1. Let t be an L-term with no variable occurences. Then

= (tM)u - ((tMi)i€I>z,{'

2. Let o be a sentence. Then

HMMZ-FUifandonlyif{iEI:Mi):U}EU.

Remarks. 1. Lett(x1,...,2,) beaterm, ¢(z1,...,z,)aformulaand a',...,a" elements of 1_[Z M;.
Adding to the language n new constant symbols ci, ..., c, that we interpret as a},...,a? in M;
and hence as azll, ..., ag in Hu M;, one has

My (1 M1
" (ayyy - ay) = (t (ai,...,a?)>u, and
HuMi|:<p(aZb,.. au)lfandonlylf{zél M; = ¢(a;,... }GZ/I
2. It follows that Hu M; satisfies (ajy, .. .,al) if and only if M; satisfies ¢(a},...,al) for almost

every i € I (with respect to the measure pyy).

Proof. We show that ¢ equals (tM);; by induction on the complexity of t. If ¢ is a constant symbol,
this follows from the definition of ¢Nu. If ¢ is the term ft; - - - t,,, where the terms t¢1,...,t, have lower
complexity, then

tMu = fMu(ti\/[L{’” : 7t1]lb/fu) = fMu((tjlw)U7~ ) (t%)u) = (fM(t{W7 : '7tr]§4)) = (tM)

Let us show the second point of L.os” Theorem by induction on the complexity of o. If o is the atomic
sentence 7(ty,...,t,), then 2. follows from the definition of »™. If & is the sentence oy A oa, then

[[,Miko < {icl:Mioijctand{icl: Mo} ecu

u u:

= {icl:MEa}n{icl: M Eo}lcu
{ I:M;Eo andMZ-):UQ}GZ/I.
{ MZ':O'}GZ/{
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If o is the sentence Jxp for some formula p(x), then Hu M; satisfies o if and only if there exists
some ays in Hu M; such that Hu M; satisfies p(a). Let ¢ be a new constant symbol, and define its

interpretation in M; to be a;. It follows that Hu M; satisfies p(a) in L if and only if it satisfies the
sentence ¢((c)) in L U {c} (note that ¢((c)) and ¢(z) have the same complexity). By the induction
hypothesis, one has

[, MiE ) <= {iel: MiE ()} €U < {iel: M| p(ai)} €U.

As{i el : M; = ¢(a;)} C {i € I: M; = Jzp}, the latter set belongs to U. To show the reverse
implication, let J = {i € I : M; |= Jzp} be in U. Using the Axiom of Choice, one may choose an
element (a;);er in Hl M; such that for every i in J, one has M; = ¢(a;), and a; is arbitrary in M; for
i€ I\ J. It follows that the set {i € I : M; = ¢(a;)} contains J and hence is in U, and we finish as

previously, adding one new constant symbol ¢ to the language and interpreting ¢™i by a;, hence ¢Mv

by (ai)u-
Note that all of the above holds if I/ is merely a filter on [. If ¢ is the sentence —7, then

[[[MiFo = [[ Mitm = {ieI:Mi):T}gzu.
Since U is an ultrafilter, one has
fiel:Mprl¢u « {iel:M}t7}eu,

so that one has Hu M, = o if and only if {z el: M E _\T} cu. O

Example 3.17 (model of non standard analysis) Let R be considered as an L,,g-structure, and let
F be a filter on N and U/ an ultrafilter on N. By Exercise 3.14, the reduced power R’ is a ring and
the ultrapower RY is a field. The latter statement can be deduced again by Los’ Theorem: RY has
the same L,;,4-theory as R: it is a field of characteristic 0, every polynomial with coefficient in RY
and odd degree has a root in RY. The map i : R — RY that maps a real number 2 to the element
(x,z,z,... )y is an Ly,g-embedding, so that R can be seen as a subfield of RY. One can define a
ordering < on R¥ by setting

a<b < b—aisasquare < RY = ¢(a,b),

where ¢ is the formula 3z(y — x = 22). As ¢ defines a dense linear ordering on R that is compatible
with the field structure of R, properties which are expressible by a L,;,4-sentence, it follows from
by Los’ Theorem that < also defines a dense linear ordering on RY that is compatible with the field
structure on RY and extends the natural ordering on R (i.e. such that 2 < y implies i(x) < i(y)
for all real numbers  and y). If the ultrafilter I is principal, then R is isomorphic to R. If I
is non-principal (i.e. contains every cofinite subset of N), then RY has infinitesimal numbers i.e.
elements ¢ that satisfy 0 < € < x for every real number z > 0, for instance

(1 111 >
€= = oy Ty
7273747 u7

1

as 0 < — < z holds for cofinitely many n in N. It also has infinite numbers i.e. elements w satisfying
n

w > x for every real number z, for instance

1
w==-=(1,2,3,4,.. u.
g

Note that as RY is a field, every non-zero element has a unique multiplicative inverse. As e-w = 1,

we may write w = ¢! without any ambiguity.

Corollary 3.18 (Compactness Theorem) Let 3 be a theory each of whose finite subset 3o C ¥ has a
model. Then ¥ has a model.
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Proof. In the particular case where the language is countable, let (o,,),>1 be an enumeration of ¥ and
let M,, be a model of {¢1,...,p,} for every natural number n, so that if o is in X, one has M,, = o
for all but finitely many n € N. Then, for any ultrafilter &/ on N extending the Fréchet filter, the
ultraproduct Hu M, is a model of 3 by f.os’ Theorem.

General case. Let I be the set of all finite subsets of X, and, for every ¢ in I, let M; be a model
of i. For every sentence o in ¥, let J(o) be the subset of I each of whose elements contain o, so
that M; = o as soon as i € J(o). For any ultrafilter U extending F = {J(o) : 0 € ¥} (note that
J(o1)N---N J(oy) contains {o1,...,0,} hence is never empty, so F generates a filter that can be
extended to an ultrafilter), the ultraproduct Hu M; is a model of ¥ by f.os’ Theorem. ]
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CHAPTER 4

ENUMERATION AND SIZE OF INFINITE SETS

Ordinal numbers

Let X be a set. A binary relation < on X is called an ordering, or partial ordering, if it is reflexive
antisymmetric and transitive. A binary relation < on X is called a strict ordering if it is antireflexive
(i.e. if £ x for any x) and transitive. Every ordering < on X induces a natural strict ordering on
X, written <, defined by z < y if and only if x < y and x # y. Conversely, every strict ordering < on
X induces an ordering, written <, defined by x < y if and only if x < y or x = y. An ordering < on
X is linear if for every x and y in X, either z < y or y < z hold.

Definition 4.1 (well-ordering) A well-ordering on X is an ordering such that every non-empty subset
Y C X has a least element (i.e. an element y € Y such that y < z for all z € Y).

Remark. A well-ordering on X is a linear ordering on X as every pair {z,y} has a least element.
Conversely, a linear ordering of X is a well-ordering of X if and only if there is no infinite strictly
decreasing chain of elements of X.

Definition 4.2 (transitive set) The set X is transitive if every element of X is a subset of X.

Remark. Transitivity of X ensures that if y € X and z € y, then z € X. In particular, if € defines a
(strict) ordering on X, then X is transitive.

Definition 4.3 (ordinal number) The set X is an ordinal number if it is transitive and € is a strict
ordering on X that induces a well-ordering on X.

We shall denote ordinal numbers by Greek letters «, 5,7, . ...

Lemma 4.4 1. () is an ordinal, written 0.
2. If B is an ordinal and o € 3, then a is an ordinal.
3. If B is an ordinal, B equals the set [0, ) of ordinals a such that « € 3.
4. If a and B are distinct ordinals, then o C 8 iff a € .

Proof. 1. An ordinal number has been defined by universal properties, hence hold of the empty set.
2. If 5 is an ordinal, @ € 8 and v € «a, for any § € 7, the elements v and § belong to 5 by transitivity
of the set 5. It follows that § € « by transitivity of €, so the set « is transitive. If a, b and ¢ are
elements of «, then a, b, c are elements of 5 by transitivity of 3; if a € b and b € ¢, then a € ¢ by
transitivity of €, so € is transitive on «. As the relation € on « is the restriction of the relation € on
B, € is a well-ordering on .

3. Follows from 2.

4. One direction follows from the transitivity of . Conversely, if « C 8 and o # 3, then [\ «
is non-empty hence has a least element . We claim that « = {z € § : € ~}: the inclusion
{z € B:2 €y} C a follows from the minimality of 7 and conversely, if z € a, one has either v € x
(hence 7 € «, a contradiction) or v = z (same contradiction again) or € 7. On the other hand, one
also has v = {z € 8 : x € v}, and it follows that o = v € 8 (by definition of 7). O
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We define a strict ordering < on the class of all ordinals by setting for any two ordinals o and g,
a < B if and only « € 5.
It follows from Lemma 4.4 that the corresponding partial ordering is
a < B if and only if a C .
Theorem 4.5 (< is a linear ordering on the class of ordinals) For any two ordinals a and [3, one has
either a < B, or f < a.

Proof. v = a N f is transitive (every element of o N f is a subset of a N ), and well-ordered by €:
it is an ordinal satisfying v C « and v C B. If these inclusions are both strict, then v € N § by
Lemma 4.4, so v € v, a contradiction. One thus has either aNg=aoran g = 7. [

Remarks. 1. (the class of ordinals is well-ordered) For every non-empty set A of ordinals, let (| A
be the intersection of all « € A. Being an intersection of ordinals, (] A is an ordinal, and a lower
bound of A. If (| A were not an element of A, one would have | A < a by Theorem 4.5 (hence
N A € a) for every a in A, hence (VA € N A, a contradiction: (] A is the least element of A, and

ian:minA:ﬂA.

2. (every non-empty set of ordinals has an upper bound) For every set A of ordinals, [JA is an
ordinal. If z € [J A, then x € « for some o € A. If y € z, then y € « since « is an ordinal, so |J A
is transitive. Any three elements of |J A must belong to one o« € A (since every three ordinals
are linearly ordered by Theorem 4.5), so € is a transitive relation in (JA. If B is a non-empty
set of elements of |J A, then (| B is the least element of B by the above remark. So [JA is an
upper bound of A (in the class of ordinals), and the least such, as 8 < [J A implies 5 € « for
some a € A. This shows

sup A = U A.
Theorem 4.6 Every well-ordered set is isomorphic (as an ordered set) to a unique ordinal number.

Definition 4.7 (successor ordinal, limit ordinal) For every ordinal «, the set alU{a} is also an ordinal,
written « + 1, called the successor ordinal of . If X is not the successor of any ordinal (and not 0),
A is called a limit ordinal and A is the set |J, . .

Note that if 8 = {a : @ < #} holds for every ordinal, but A = [J{a : @ < A} holds if and only if \ is

a limit ordinal.

Theorem 4.8 (transfinite induction) Assume that C is the class of ordinals such that

1. 0 is an element of C.
2. if a is an element of C then o+ 1 also.
3. if X is a limit ordinal such that o is an element of C for every o < A, then A is an element of C.

Then C is the class of all ordinals.

Proof. If there is an ordinal + that is not an element of C, as « is well-ordered, there is a least § <
that is not an element of C. Either v is a successor ordinal v = « + 1, but then « hence a + 1
belong to C by 2, a contradiction; of « is a limit ordinal. As v = [0, A), one must have v € C by 3, a
contradiction; or v is 0, contradicting 1. ]

Hence, practically, the class of ordinals is constructed by transfinite induction, starting from 0 = 0,
and applying successor steps

1=0+1, 2=1+1, 3=2+1 ete.

then a limit step
w=1{1,2,3,...},
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then successor steps again
w+l, w+2=(w+1)+1, w+3=(w+2)+1 etc.
then a limit step
wtw=w-2={w+l,w+2,w+3,...}.
The first ordinal numbers are 0,1,2,...,n,..., w,w+ 1, w+2,...,w+n,..., w2, w2+1,...,w3,...,
W, o w? W w w L wY w2, wn, ., w@ T L where the
operations a + 3, a3 and af are defined for all o by transfinite induction on 3:

a+0=0, a-0=0, o =1,
a+(B+1)=(a+p)+1, a(f+1)=af +a, o’ =al - a,
a+A=sup{a+p:5 <A}, aX =sup{af : [ < A}, of‘:sup{aﬁ:,8</\}.

Theorem 4.9 (Zermelo) Every set X can be well-ordered: there exists an ordinal B such that X is
the set {xq : a < B}.

Cardinal numbers

Definition 4.10 (having the same cardinal) Two sets X and Y have the same cardinal, which we
write | X| = |Y|, if there exists a one-to-one map from X onto Y.

This defines an equivalence relation on the class of sets.

Definition 4.11 (having smaller cardinal) The set X has smaller cardinal than Y, which we write
| X| < |Y] if there exists an injective map from X to Y.

This defines a reflexive transitive relation on the class of sets.

Theorem 4.12 (the relation < is a partial order modulo the cardinal relation, Cantor-Bernstein)
If I X| <|Y] and |Y| < |X]|, then | X| = |Y].

Proof. We begin with the particular case when Y C X. Let f: X — Y an injective map. We define
inductively Xo = X, Xp41 = f(Xyn), and Yo =Y, Y11 = f(Y,,). Note that Yy C Xo hence Y,, C X,
for all n. Note also f(X, \Y,) = Xy41 \ Yot1. Let g : X — Y be the function defined by

g(z) = f(z) ifx € U Xn \ Y, or g(z) = x otherwise.
n=0

If g(x) = g(y), then either only one of z and y (say =) belong to some X,, \ Y,,, hence f(x) =y (then
f(x) € X411\ Ynt1, a contradiction), or both = and y belong to |J X, \ Y, hence f(x) = f(y), or none
of them belong to U X,, \ Yy,. In every case, x =y, so g is injective. On the other hand, if y is in Y.
Either y € f(UX, \Yn), soy = f(x) for some z in X, \ Yy, hence y = g(x). Ory ¢ f(UX, \Ya);
but y € Y, hence does not belong to X \ Y, and does not belong to any X,, \ Y,. It follows that
y = g(y), so g is surjective.

General case. If f: X — Y and ¢g: Y — X are injective, then g(Y) C X and go f : X — ¢(Y) is an
injective map, so we may apply the first case to find a bijection between g(Y') and X. As X and g(Y")
are in bijection via g, this concludes the proof. O

We write |X| < |Y| if and only if | X| < |Y] and |Y| # | X]|.
Theorem 4.13 (the relation < is non-trivial, Cantor) For any set X, one has |X| < |P(X)].

Proof. Let f be any function from X to P(X). Let us show that f is not onto. Let Y be the subset
Y={zeX:z¢ f(x)} of X. If Y is in the range of f, there is an element a € X with Y = f(a). If
a €Y, then a ¢ f(a), a contradiction. If a ¢ Y, then a € f(a), a contradiction also. It follows that f
is not onto, so that |X| # |P(X)|. On the other hand, the map x — {x} is an injective map from X
to |P(X)] so | X| < |P(X)]. O
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Definition 4.14 (cardinal number) An ordinal number « is called a cardinal if it is the least ordinal
B such that |a] =|5], i.e. if « satisfies |3] # || for all § € a.

We shall use &, A, i1, ... to denote cardinal numbers. Finite ordinals are cardinals, and w is the least
infinite cardinal.

Definition 4.15 (cardinal of a set) Every set X is in bijection with a unique cardinal number called
its cardinal, written | X|.

Proof. By Zermelo’s Theorem, there is an ordinal « that is in bijection with X. Among the ordinals
B € a + 1 that satisfy this property, there is a least one for €, say A. We claim that A is an ordinal
number, for any # € A in bijection with A would be in bijection with X, contradicting the minimality
of \. If X\ and p are two cardinal numbers in bijection with X, they are in bijection, so A ¢ u and
p ¢ X by definition of a cardinal, hence p = A. O

Remarks. 1. The notation can |X| = |Y| means either that X and Y are in bijection, or that X
and Y have the same cardinal number. These statement are equivalent.4.10.
2. If X is a cardinal, then |A| = A. If XA and p are cardinal numbers, the notation |A| < |u| means
either that A € u, or that there is an injection from A to u, but no bijection. These statement
are equivalent.

Definition 4.16 (operation on cardinals) The arithmetic operations on cardinals are defined by:

K+ A= |AUB] where |A| = k, |B| = A, A, B disjoint,
k-A=|AXx B| where |A| =k, |B| = A,
K = |AB where |A| = &, |B| = A,

and are independent of the choice of the sets A and B.

Exercises 4.17 1. If | X| = &, then |P(X)| = 2".

+ and - are associative, commutative and - is distributive over +.
(KA)H = KHX)H.

M = gARF,

(RMH = g,

If kK < A, then k¥ <A™

If 0 < A < p, then v#* < kM.

K0=1;1"=1;0"=0if k > 0.

0N W

Lemma 4.18 If A is a set of cardinals, then sup A is also a cardinal.

Proof. sup A is an ordinal according to the previous section. If 8 < sup A is an ordinal, there exists a
cardinal A € A such that 8 € A, so || < |A| by definition of a cardinal. It follows that |5| < sup A. O

Definition 4.19 (aleph numbers) By Cantor’s Theorem, for any cardinal A, there exists a cardinal
k > A. The set of cardinal numbers g such that A < p < & is thus non-empty, and has a least element
(that does not depend on \) that we write AT and call the successor cardinal of A. Using Lemma 4.18,
we define an increasing enumeration N of cardinals by putting

No=w, Nop1 =N, and Ry =sup{Ng:B <A} for alimit ordinal \.
N, is called a limit cardinal.
Lemma 4.20 Fvery infinite cardinal number is of the form R, for some unique ordinal c.

Proof. Let A be an infinite cardinal and consider the map i : A — X that maps a to N,. Note that
a < ( implies R, < Ng for any ordinals o and § (by transfinite induction on ). In particular, the
map i is well-defined, and injective, so that Ry, > \. It follows that the class {« ordinal : A < N, }
is non-empty and has a least element 3 that satisfies Ng > A. As A is infinite, 8 cannot be 0. Nor can
B be a limit ordinal, one has 8 = a + 1 so that R, < A < N,41, hence A = X, O
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CHAPTER 5

MORE MODEL THEORY

Elementary substructures, elementary extensions

Two L-structures N and M are called elementarily equivalent, which we write N = M, if they have
the same L-theory. This defines an equivalence relation on the class of all L-structures. Recall that NV
is an L-substructure of M, written N Cp M, if N is a subset of M containing all the interpretations of
constants and closed under the interpretations of functions, and L" is the restriction of LM to N. We
saw in the exercise sheets that if p(z) is a quantifier-free L-formula, N C; M are two L-structures,
and a is a tuple in IV, then one has

N E (@) < M E o).

Definition 5.1 (elementary substructure, elementary extension) Let N and M be L-structures. N is
an elementary substructure of M, written N < M, if N is a substructure of M and for every L-formula
¢(z) and tuple a in N, one has

N E (@) < M E o).

One also says that M is an elementary extension of N.

Remarks. 1. This defines a reflexive, transitive, antisymmetric relation on the class of L-structures.
2. If M is an L-structure and A a subset of M, we write L U A for the language obtained by adding
a constant symbol for every element of A and define the L U A-structure My to be (M, LM U A),
obtained from M by interpreting any m in A by m. If IV is an L-substructure of M, then N is an
elementary substructure of M iff the L U N-structures Ny and My are elementarily equivalent.

3. U N<K, M<Kand N Cyp M, then N < M.

Recall that an L-embedding o : N — M between two L-structures M and N is a map that preserves
the language L.

Lemma 5.2 (characterisation of embeddings) Let M, N be two structures and o : N — M a map.

1. o is an embedding if and only if, for every quantifier-free formula () and tuple a in N,
N e pla) <= M E (o(@).

2. If o is an isomorphism, then, for every formula ¢(Z) and every tuple a in N, one has
N yla) <= M E p(o(a)).

Proof. 1. Assume that the equivalence holds and let ¢ be a constant symbol, f an n-ary function
symbol and r an n-ary relation symbol. Taking the atomic formula z = ¢ and a = ¢V, one has
o(cN) = M. Taking the atomic formula f(z1,...,7,) = 2,41 and b = (by,...,b,) and a = (b, fV(b))
in N, one has fM (o (b)) = o(fN(b)). Taking the atomic formula r(z1,...,x,) and any @ = (a1, . . ., a,)
in N, one has @ € vV if and only if o(a) € r™. It follows that o is an embedding. Conversely, if o is
an embedding, then the equivalence holds for atomic formulas: this can be shown first for a formulas
of the form = = (y) inductively on the complexity of the term ¢, and then for a quantifier-free formula

© by induction on c¢(y).
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2. If o is an isomorphism, we show the equivalence by induction on the complexity of formulas. It
holds for atomic formulas by 1. It holds for a formula —) or ¢ A ¢ by the induction hypothesis. If
©(z) is the formula Jyy(y, z) (we assume without loss of generality that y does not occur in Z), then
one has

N E p(a) < there exists b € N with N = ¢(b,a) <= there exists b € N with M = ¢(o(b),0(a)),
which is equivalent to M = p(o(a)). O

Definition 5.3 (elementary embedding) Let M, N be two structures and o : N — M a map. o is an
elementary embedding if for every formula ¢(z) and every tuple a in N, one has

(2) N Ep(a) <= Mk ¢(o(a)).
Remark. An elementary embedding is an embedding.
Examples 5.4 1. An ismorphism is an elementary embedding.

2. If M is an L-structure and MY an ultrapower of M, the map M — MY that sends an element
x to the class (z,...,z,...)y is an elementary embedding by L.os’ Theorem.

Lemma 5.5 Let M, N be two structures and o : N — M an embedding. o is elementary if and only
if o(N) is an elementary substructure of M.

Proof. As o is an embedding, then N and o(N) are isomorphic. By Lemma 5.2, for every formula
©(z) and tuple @ in N, one has N = ¢(a) < o(N) = ¢(o(a)).
On the other hand, o(N) < M is equivalent to o(N) = ¢(co(a)) <= M = ¢(o(a)). O

Lemma 5.6 (Tarski-Vaught test) Let M be a structure and N C; M a substructure. If, for every
L-formula ¢(z,y) and tuple a in N, whenever one has M |= Jxp(x,a), there exists b in N such that
M = p(b,a), then N is an elementary substructure of M.

Proof. We show that the equivalence N = ¢(a) <= M = ¢(a) holds for every tuple a in N by
induction on the complexity of formulas. As N is a substructure of M, the equivalence holds for
atomic formulas. If it holds for ¢ and 1, it also holds for - and ¢ A . If ¢ is of the form Iz (z,y),
then
N |= ¢(a) <= there exists b in N with N = (b, a)

<= there exists b in N with M = ¢ (b, a)

= there exists b in M with M = (b, a)

= M= p(a),

and the missing implication is precisely the hypothesis. O

Theorem 5.7 (upward Léwenheim-Skolem’s Theorem) Let M be an infinite L-structure and k a car-
dinal number. There is an elementary extension K of M such that |K| > k.

Proof. Let (M) be the L U M-theory of M (sometimes called the elementary diagram of M) and D
a set of new constant symbols of cardinality . Consider the L U M U D-theory

Y =3(M)UTI' where I ={c#d:c,d distinct elements of D}.

Any finite subset ¥y C X is the union of a finite subset of ¥(M) and a finite subset of I" involving
constants symbols belonging to a finite set Dy C D. Choosing finitely many distinct elements (my)ken,
of M, one defines an L U M U D-structure on M by considering (M, L™ U M U (my)rep) where my, is
arbitrary chosen in M for k € D\ Dyg. It follows that (M, L™ U M U (my)rep) is a model of ¥y. By
the Compactness Theorem, ¥ has a model (K, L UM UDX). As K is given with interpretations of
the constant symbols, there is a map i : D — D¥ C K sending ¢ to ¢X. As K satisfies I, the map i
is injective, so | K| > k. As K satisfies (M), one has, for every formula ¢(Z) and every tuple a € M,

ME ¢(@) (in L) <= M E¢((@) (in LUM) < K (@) (in LUM) < K | (@) (in L),

so the L-structure (K, LX) is an elementary extension of M. O



