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CHAPTER 1

BASIC MODEL THEORY

1.1 Language, structures and morphisms

Definition 1.1 (language) A language is a set
{
(f, nf ), (r, nr), c : f ∈ F, r ∈ R, c ∈ C

}
consisting of

three kinds of elements: function symbols f , relation symbols r and constant symbols c. Each function
symbol f and relation symbol r come equipped with a natural number nf and nr respectively, called
their arity (that will provide information on the size of their domains).

Examples 1.2 1. The language of orderings

Lord =
{
(6, 2)

}
consists of one binary relation symbol 6.

2. The language of semigroups
Lsgp =

{
(×, 2)

}
consists of one binary function symbol ×.

3. The language of monoids
Lmon =

{
(×, 2), e

}
consists of one binary function symbol × and one constant symbol e.

4. The language of groups
Lgp =

{
(×, 2), (−1, 1), e

}
consists of a binary function symbol ×, a unary function symbol −1 and a constant symbol e.

5. The language of ordered groups

Logp =
{
(×, 2), (−1, 1), (<, 2), e

}
consists of the language of groups together with one binary relation symbol <.

6. The language of rings
Lring =

{
(×, 2), (+, 2), (−, 2), e0, e1

}
consists of three binary function symbols and two constant symbols.

7. The language of fields

Lfield =
{
(×, 2), (−1, 1), (+, 2), (−, 2), e0, e1

}
consists of the language of rings together with one unary function symbol.

Remark. One often omits to make these natural numbers precise when they are obvious from the
context, and simply write a language

{
f, r, c : f ∈ F, r ∈ R, c ∈ C

}
.

Definition 1.3 (structure) Let L =
{
(f, nf ), (r, nr), c : f ∈ F, j ∈ R, c ∈ C

}
be a language. A

structure in the language L (or L-structure for short) is given by(
M,fM , rM , cM : f ∈ F, r ∈ R, c ∈ C

)
where

– M is a non-empty set, called its domain,
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– for every f in F , fM is a function from Mnf to M , called the interpretation of f in M ,
– for every r in R, rM is an nr-ary relation on M (i.e. a subset of Mnr), the interpretation of r

in M ,
– for every c in C, cM is an element of M , called the interpretation of c in M .(

fM , rM , cM : f ∈ F, r ∈ R, c ∈ C
)
is called the interpretation of the language L in M , written LM :

an L-structure is written (M,LM ).

Examples 1.4 1. We shall write N, Z, Q and R respectively for the set of natural numbers,
integers, rationals and real numbers. (N,6N), (Z,6Z), (Q,6Q) and (R,6R) are structures
in the language of orderings, where 6N, 6Z and 6Q are the orderings induced by the natural
ordering 6R on R. Note that there are many other ways to interpret 6: if / denotes the binary
relation defined on R by putting x/y iff xy > 2014, then (R, /) is also a structure in the language
{6}, despite the fact that / is merely a binary relation and not even an order.

2. (R,+R,−R,6R, 0) is a structure in the language of ordered groups (where +R denotes the usual
addition, −R the usual opposite function and 6R the canonical ordering on R). Note that there
are many other ways to endow the set R with a structure in the language of ordered groups.

3. A group G is naturally equipped with a structure in the language of groups {×,−1 , e}: × is
interpreted by the group law, −1 by the inverse operation and e by the neutral element. Similarly
for monoids, semigroups, rings, fields in their respective languages.

Abusing notations, we sometimes identify a structure (M,LM ) with its domain M . Only when
there is no ambiguity, we also simply write f instead of fM , for the interpretation in M of a symbol
f of the language. In what follows, we assume that a language always contains the binary
relation = which is interpreted in every structure by the usual equality.

Definition 1.5 (substructure, extension) Let L be a language, (M,LM ) and (N,LN ) two L-structures.
(N,LN ) is an L-substructure of (M,LM ) (or a substructure of M for short when L is obvious from
the context) if N is a subset of M and if LN is ‘the restriction of LM to N ’, more precisely:

1. For every r in R, one has rN = rM ∩Nnr .
2. For every f in F , one has fN = fM

∣∣∣
N

nf
.

3. For every c in C, one has cN = cM .
One also says that (M,LM ) is an L-extension of (N,LN ) (or simply an extension of M).

Remark. We write (N,LN ) ⊂ (M,LM ) or N ⊂L M when (N,LN ) is an L-substructure of (M,LM ).
Note that this defines a reflexive, transitive, antisymmetric relation.

Examples 1.6 1. In the language of orderings {6}, the structures (N,6N), (Z,6Z) and (Q,6Q)
are substructures of (R,6R). In fact, the substructures of (R,6R) are precisely the subsets of
R together with the induced ordering.

2. In the language of monoids {×, e}, consider the structure R where × is interpreted by the
addition and e by 0. Its substructures are precisely the subsets containing 0 that are closed
under addition (i.e the submonoids). For instance (N,+, 0) is a substructure of (R,+, 0).

3. In the language of groups {×,−1 , e}, consider the additive structure of R (where × is interpreted
by the addition, e by zero, and −1 by the opposite function −). Its substructures are precisely
the subsets containing zero that are closed under addition and opposite (i.e the subgroups). For
instance whatever the Lgp-structure LN on N, (N, LN) is not a substructure of (R,+,−, 0).

4. In the language of rings, the substructures of (R,+,×,−, 0, 1) (with its natural ring structure)
are precisely the subrings of R (exercise).

5. If (M,LM ) is an L-structure and A ⊂ M a subset of M , then the L-structure generated by
A, written 〈A〉, is by definition the L-substructure of M whose domain is the intersection of
the domains of all the L-substructures that contain A (exercise: show that an intersection of
substructures of M is again a substructure of M). The domain of 〈A〉 is the smallest subset of
M containing A, the constants of LM and closed under the functions of LM (exercise).
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Note that the notion of substructure depends on the language L.

Definition 1.7 (morphism, embedding, isomorphism) Let (M,LM ) and (N,LN ) be two L-structures.
1. A morphism of L-structures (or L-morphism for short, or even morphism when there is no

ambiguity about the language) fromM toN is a map σ : M −→ N that preserves the language L,
i.e. such that

– for all constant symbols c, the equality σ(cM ) = cN holds,
– for all relation symbols r and all a in Mnr , then a ∈ rM implies σ(a) ∈ rN ,
– for all function symbols f and a in Mnf , then σ(fM (a)) = fN (σ(a)).

2. An embedding of L-structures (or L-embedding or simply embedding) fromM to N is a morphism
such that for all relation symbols r in R and for all a inMnr , a ∈ rM holds if and only if σ(a) ∈ rN
holds. As the language contains equality, note that an embedding is always injective.

3. An isomorphism of L-structures (or L-isomorphism, or isomorphism) fromM to N is a surjective
embedding. An L-automorphism of M is an L-isomorphism from M to M .

Remark. If σ : M −→ N is a morphism of L-structures, then σ(M) is an L-substructure of N (and
in particular an L-structure). If σ is in addition an L-embedding, then the map σ : M −→ σ(M) is
an isomorphism of L-structures (exercise).

Examples 1.8 1. In the language of orderings {6}, a morphism from (R,6R) to (R,6R) is an
increasing map; an embedding from R to R is a strictly increasing map.

2. In the language of groups Lgp, a morphism from (R,+,−, 0) to (R,+,−, 0) is precisely a group
morphism of the additive group of R. An embedding is an injective group morphism, and an
automorphism is a group automorphism. More generally, an Lgp-morphism between two groups
G and H is precisely a group morphism from G to H.

1.2 Terms and formulas
We consider a fixed language L = C ∪ R ∪ F , and a fixed set V the elements of which are called

variables.

Definition 1.9 (term) The set of L-terms is the smallest set containing the constant symbols, the
variables, and such that if f is a function symbol of L and t1, . . . , tnf

are terms, then ft1 · · · tnf
is also

a term.

Remarks. 1. An L-term is a finite word in the alphabet C ∪ V ∪ F .
2. Practically, an L-term is constructed inductively: one begins with variables and constant symbols

and apply function symbols. The complexity c(t) of term t is defined inductively as follows:
variables and constant symbols have complexity 0, and a term ft1 · · · tnf

has complexity 1 +
max(c(t1), . . . , c(tnf

)).
3. A term is uniquely determined in the following sense: it is either a constant symbol, or a variable,

or written in a unique way as ft1 · · · tnf
(and only one of these 3 possibilities holds).

Notations. 1. If t is a term and x1, . . . , xn are distinct variables, we write t(x1, . . . , xn) to indicate
that all variables appearing in t (but possibly more) are among x1, . . . , xn. Note that adding
variables in between the brackets does not alter the term.

2. We may add parentheses to ease the reading and often write f(t1, . . . , tnf
) for ft1 · · · tnf

. If
nf = 2, we also write (t1ft2) (or even t1t2 if there is no ambiguity on f) instead of ft1t2.

3. (substitution in a term) If t(x1, . . . , xn) is a term and t1, . . . , tn are terms, one defines the term
t((t1, . . . , tn)) inductively on c(t) by replacing in t every occurence of xi by ti.

Example 1.10 In the language of rings, ×+xy− z1 is a term (written also ×(+(x, y),−(z, 1))). For
ease of reading, we prefer to write it (x+ y)× (z− 1), which requires the use of parentheses. Note for
instance that (x+ y) + z and x+ (y + z) are different terms (++xyz and +x+yz respectively).



10 CHAPTER 1. BASIC MODEL THEORY

Definition 1.11 (atomic formula, formula) An atomic formula in the language L is an expression of
the form r(t1, . . . , tnr ) where r is in R and t1, . . . , tnr are L-terms. The set of L-formulas is the smallest
set containing all atomic formulas and such that

1. if ϕ is a formula, then ¬ϕ is also a formula;
2. if ϕ and ψ are formulas, then ∧ϕψ is a formula (written (ϕ ∧ ψ));
3. if ϕ is a formula and x a variable, then ∃xϕ is a formula.

Remarks. 1. An L-formula is a finite word in the alphabet L ∪ V ∪
{
¬,∧,∃

}
. ¬ is called the

negation symbol, ∧ the conjunction symbol and ∃ the existential quantifier.
2. As the language contains equality, for every term t1 and t2, the expression t1 = t2 is an atomic

formula.
3. (uniqueness of reading) An L-formula is of one (and only one) of the following forms: a (unique)

atomic formula r(t1, . . . , tnr ), the negation ¬ϕ of a (unique) formula ϕ, the conjunction ∧ϕψ of
two unique formulas ϕ and ψ, or ∃xϕ for a unique variable x and formula ϕ.

4. We have used the notation ∧ϕψ instead of the usual (ϕ ∧ ψ) to state the above uniqueness
result without having to cope with parentheses. From now on, we shall use the usual notation
with parentheses, and allow ourselves to add more parentheses around subformulas to ease the
reading.

5. As with terms, formulas are constructed inductively, starting from atomic formulas and taking
negations, conjunctions and existential quantifiers. The complexity c(ϕ) of a formula ϕ is defined
inductively: it equals 0 for atomic formulas, 1 + c(ϕ) for (¬ϕ) and ∃xϕ, and 1 + max(c(ϕ), c(ψ))
for ϕ ∧ ψ.

6. ∃xϕ is a formula even if the variable x does not appear in ϕ.
7. As formulas are defined inductively, to show (or to define) that a given property P holds for every

formula, one shows (or defines) that P holds for atomic formulas (which may require another
induction on the complexity of terms); then one shows that if ϕ and ψ satisfy P , then so do
ϕ ∧ ψ, ¬ϕ and ∃xϕ.

Notations. 1. If r is a binary relation symbol, we often write (xry) instead of r(x, y).
2. If ϕ and ψ are formulas, we use the abbreviations

ϕ ∨ ψ, ϕ→ ψ, and ϕ↔ ψ

respectively for ¬(¬ϕ∧¬ψ), for ψ ∨¬ϕ and for (ϕ→ ψ)∧ (ψ → ϕ). The symbol ∨ is called the
disjunction symbol. ¬, ∧ and ∨ are called Boolean operations.

3. We also write ∀xϕ for ¬∃x¬ϕ. The symbol ∀ is called the universal quantifier.
Remark. We could have introduced the symbols ∨ and ∀ earlier together with ∧ and ∃ directly in
the alphabet needed to build a formula. Our choice of the definition of a formula has the advantage of
simplifying many definitions and proofs, but the drawback of breaking the symmetry between ∧ and
∨ on one hand, and ∃ and ∀ on the other hand, for instance in the definition of the complexity of a
formula.

Definition 1.12 (free variable, bounded variable) Let ϕ be a formula. The occurence of a variable in
ϕ can be either bounded by a quantifier, or otherwise free (note that a variable can have both bounded
and free occurences). The precise definition is by induction on the complexity c(ϕ): if ϕ is atomic,
every variable occurence is free. If ϕ = ¬ψ, the free occurences of a variable x in ϕ are the same as
the free occurences of x in ψ. If ϕ = ψ1 ∧ ψ2, the free occurences of x in ϕ are the union of the free
occurences of x in ψ1 and ψ2. If ϕ = ∃xψ, then every occurence of x in ϕ is bounded, and the freeness
of occurences of variables other than x in ϕ remains the same as in ψ.

Example 1.13 In the language {6}, consider the formula
(
∃x(x 6 y ∧ x 6 z)

)
∧ x 6 y: the variable

x has three bounded occurences and a free one; all the occurences of y and z are free.

Definition 1.14 (sentence) A sentence is a formula in which every occurence of every variable is
bounded.
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Notation. If ϕ is a formula and x1, . . . , xn distinct variables, we shall write ϕ(x1, . . . , xn) to indicate
that all variables having a free occurence in ϕ (but possibly more) are among x1, . . . , xn. Note that
adding additional variables in between the brackets does not alter the formula.

Definition 1.15 (substitution in a formula) Let ϕ(x1, . . . , xn) be a formula, and let t1, . . . , tn be
terms. We define a formula ϕ((t1, . . . , tn)) by replacing every free occurence of xi by ti.

Remark-Definition 1.16 (terms compatible with a formula) Note that if ψ(y) is the formula ∃x(x 6=
y), then ψ((x)) is the formula ∃x(x 6= x). In order to avoid unrequired interactions between bounded
variables in ϕ(x1, . . . , xn) and variables in the terms t1, . . . , tn replacing x1, . . . , xn, one should apply
Definition 1.15 in the case when the variables occurences in t1, . . . , tn are free when being substituted
in ϕ, that is when substitution does not change the number of bounded occurences of any variable.
In that case, we say that the terms t1, . . . , tn are compatible with ϕ(x1, . . . , xn). For instance x is
not compatible with ∃x(x 6= y), but it is comptible with ∃z(z 6= y). Note that (x1, . . . , xn) are always
compatible with ϕ(x1, . . . , xn).

1.3 Interpretation of a term, satisfaction of a formula
Let L be a fixed language. Until now, an L-term t and an L-formula ϕ have been defined merely

as strings of characters. We now define their meaning in a given L-structure (M,LM ).

Definition 1.17 (interpretation of a term at ā) Let t(x1, . . . , xn) be an L-term and (a1, . . . , an) el-
ements of M . The interpretation tM (a1, . . . , an) of the term t in M is an element of M defined
inductively on the complexity of t: if t is a constant symbol c, then it is cM . If t is a variable xi, then
it is ai. If t is ft1 . . . tnf

, then it is fM
(
tM1 (a1, . . . , an), . . . , tMnf

(a1, . . . , an)
)
.

Examples 1.18 1. In the language {+, e}, let t(x, y, z) be the term (x + y) + (z + e). Let a, b, c
be three elements of the structure (R,+, 1). Then x(a, b, c) = a, y(a, b, c) = b and z(a, b, c) = c

hence (x+ y)(a, b, c) = a+ b, so that t(a, b, c) equals a+ b+ c+ 1.
2. Note that the interpretation in M of a term t(x1, . . . , xn) defines a function tM from Mn to M

that maps ā to tM (ā). For instance, in the language of rings, for the natural ring structure on
R, these functions are precisely the polynomial functions having coefficients in Z, the smallest
Lring-substructure of R (exercise).

Lemma 1.19 (Substitution Lemma for terms) Let x̄ be an n-tuple of variables, t(x̄), t1(x̄), . . . , tn(x̄)
terms and ā in Mn. Then one has

t((t1, . . . , tn))M (ā) = tM (tM1 (ā), . . . , tMn (ā)).

Remark. The Substitution Lemma is a practical tool that provides a natural writing of the interpre-
tation of a term of the form t((t1, . . . , tn)) using the existing interpretation of the terms t, t1, . . . , tn
instead of computing everything from the beginning. It is a kind of ‘divide and conquer’ algorithm.
If t is the term f(x1, . . . , xn) for a function symbol f (hence has complexity 1), there is no point
in invoking the Substitution Lemma to interpret f((t1, . . . , tn)), which is simply f(t1, . . . , tn), whose
interpretation is given by the inductive step of Definition 1.16; in that simple case, the Substitution
Lemma and the Definition provide the same writing: fM (tM1 (ā), . . . , tMn (ā)).
Proof. By induction on the complexity c(t). If t is a variable xi, then t((t1, . . . , tn)) is ti so one has

t((t1, . . . , tn))M (ā) = ti(ā) = tM (tM1 (ā), . . . , tMn (ā)).

If t is a constant symbol c, then both sides equal cM . If t is fs1(x̄) · · · sm(x̄), then t((t1, . . . , tn)) is the
term fs1((t1, . . . , tn)) · · · sm((t1, . . . , tn)), so one has

t((t1, . . . , tn))M (ā) = fMsM1 ((t1, . . . , tn))(ā) · · · sMm ((t1, . . . , tn))(ā) (def. of interpretation)

= fMsM1 (tM1 (ā), . . . , tMn (ā)) · · · sMm (tM1 (ā), . . . , tMn (ā)) (by induction hyp.)

= tM (tM1 (ā), . . . , tMn (ā)). (def. of interpretation)
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Definition 1.20 (satisfaction of a formula at ā) Let ϕ(x̄) be a formula (x̄ stands for (x1, . . . , xn))
and ā = (a1, . . . , an) in Mn. We define the fact that M satisfies ϕ(ā) inductively as follows:

1. If ϕ is the atomic formula r
(
t1(x̄), . . . , tnr (x̄)

)
, thenM satisfies ϕ(ā) if and only if (tM1 (ā), . . . , tMnr

(ā))
belongs to rM .

2. If ϕ is the formula ϕ1∧ϕ2, then M satisfies ϕ(ā) if and only if M satisfies both ϕ1(ā) and ϕ2(ā).
3. If ϕ is the formula ¬ψ, then M satisfies ϕ(ā) if and only if M does not satisfy ψ(ā).
4. If ϕ is the formula ∃yψ(x̄, y), then M satisfies ϕ(ā) if and only if there exists b in M such that
M satisfies ψ(ā, b).

Notations. 1. We write M |= ϕ(ā) when M satisfies ϕ(ā). For a sentence σ, as there are no free
variables involved, satisfaction does not depend on the tuple ā so we write M |= σ. Note that
M satisfies ϕ(ā) if and only if M satisfies the sentence ϕ((ā)) in the language L augmented with
n new constant symbols interpreted as a1, . . . , an.

2. If ϕ(x1, . . . , xn) is a formula, we write M |= ϕ as an abbreviation for M |= ∀x1 · · · ∀xnϕ and we
also say that M satisfies the formula ϕ.

3. If Λ is a set of formulas, we write M |= Λ when M satisfies every formula in Λ, and we say that
M satisfies Λ. We usually write Λ for a set of formulas, and Σ for a set of sentences.

Remarks. 1. One can check that M satisfies (ϕ1 ∨ ϕ2)(ā) iff M satisfies ϕ1(ā) or ϕ2(ā), and that
M satisfies ∀yψ(y, ā) iff for every b in M , M satisfies ψ(b, ā).

2. By definition of M |= ¬ϕ(ā), one has either

M |= ϕ(ā) or otherwise M |= ¬ϕ(ā).

Examples 1.21 1. In the language of orderings, the sentence

∀x∀y∀z [((x 6 y ∧ y 6 z)→ x 6 z) ∧ (x 6 x) ∧ ((x 6 y ∧ y 6 x)→ x = y) ∧ (x 6= y → x 6 y ∨ y 6 x)]

holds in an Lord-structure (M,6M ) if and only if 6M is a linear ordering on M .
2. In the language of monoids, the sentence

∀x∀y∀z [xy = yx ∧ (xy)z = x(yz) ∧ (∃t(tx = e ∧ xt = e)) ∧ xe = x ∧ ex = x]

holds in an Lm-structure M if and only if M is an Abelian group (xy stands for x× y).
3. Let (M,×,−1 , e) be a group considererd as a a structure in the language of groups, and let us

write [x, y] for x−1y−1xy. Then the sentence(
∃x∃y[x, y] 6= e

)
∧
(
∀x∀y∀z[[x, y], z] = e

)
holds in M if and only if M is a nilpotent group of class 2.

4. In the language of rings, let (M,+,×,−, 0, 1) be a ring. Then the sentence

∀x∀y∀z(z 6= 0→ ∃t(x+ yt+ zt2 = 0))

holds inM if every polynomial of degree 2 with coefficients inM has a root inM (here, t2 stands
for t × t; as we work in a ring, + is associative and we use the usual notations to simplify the
writing of the formula without any ambiguity about its interpretation in M).

Lemma 1.22 (Substitution Lemma for formulas) Let x̄ be an n-tuple of variables, ϕ(x̄) a formula,
t1(x̄), . . . , tn(x̄) terms compatible with ϕ ( i.e. the occurences of x1, . . . , xn in every ti are free when
substituted in ϕ). Let ā be an element of Mn. Then one has

M |= ϕ((t1, . . . , tn))(ā) ⇐⇒ M |= ϕ(tM1 (ā), . . . , tMn (ā)).

Proof. If ti is xi for every i, there is nothing to prove, so we assume that x1, . . . , xn have no
bounded occurence in ϕ and proceed by induction on the complexity c(ϕ). If ϕ is an atomic for-
mula r(s1(x̄), . . . , sm(x̄)), then ϕ((t1, . . . , tn)) is the formula r(s1((t1, . . . , tn)), . . . , sm((t1, . . . , tn)))
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and we apply Lemma 1.19. If ϕ is the formula ϕ1(x̄) ∧ ϕ2(x̄), then ϕ((t1, . . . , tn)) is ϕ1((t1, . . . , tn)) ∧
ϕ2((t1, . . . , tn)) and

M |= ϕ((t1, . . . , tn))(ā) ⇐⇒ M |= ϕ1((t1, . . . , tn))(ā) and M |= ϕ2((t1, . . . , tn))(ā)

⇐⇒ M |= ϕ1(tM1 (ā), . . . , tMn (ā)) and M |= ϕ2(tM1 (ā), . . . , tMn (ā))

⇐⇒ M |= ϕ(tM1 (ā), . . . , tMn (ā))

The argument is similar when ϕ is ¬ψ. If ϕ is the formula ∃yψ (where ψ(y, x̄) and y does not
appear among x1, . . . , xn), then ϕ((t1, . . . , tn)) is ∃y

(
ψ((y, t1, . . . , tn))

)
and the terms (y, t1, . . . , tn) are

compatible with ψ, so we have

M |= ϕ((t1, . . . , tn))(ā) ⇐⇒ there exists b ∈M s.t. M |= ψ((y, t1, . . . , tn))(b, ā) (by def. of |=)

⇐⇒ there exists b ∈M s.t. M |= ψ(b, tM1 (ā), . . . , tMn (ā)) (by induction)

⇐⇒ M |= ϕ(tM1 (ā), . . . , tMn (ā)). (by def. of |=)

Definition 1.23 (universal truth, logical equivalence) 1. A statement ψ is universally true if it is
satisfied by every L-structure. An L-formula ϕ(x1, . . . , xn) is universally true if the statement
∀x1 · · · ∀xnϕ is (note that this does not depend on the ordered list x̄).

2. Two formulas ϕ and ψ are logically equivalent if the formula ϕ↔ ψ is universally true.

Notation. If ϕ is a universally true formula, we write |= ϕ instead of {} |= ϕ.
We shall be interested in the complexity of formulas up to logical equivalence, focusing particularly

on quantifiers. Here are the simplest forms.

Definition 1.24 (quantifier-free, existential, universal and prenex formulas)
1. A formula is quantifier-free if it is a Boolean combination of atomic formulas.
2. A formula is existential if it is of the form ∃x1 · · · ∃xnϕ where ϕ is a quantifier free formula.
3. A formula is universal if it is of the form ∀x1 · · · ∀xnϕ where ϕ is quantifier-free.
4. A formula is prenex if it is of the form Q1x1 · · ·Qnxnϕ where Q1, . . . , Qn are quantifiers (∃ or ∀)

and ϕ is a quantifier-free formula.

Exercises 1.25 1. Every formula is logically equivalent to a prenex formula.
2. Every universal formula is logically equivalent to the negation of an existential formula.

1.4 Theories, models, semantic consequences and satisfiability
Let L be a fixed language and M an L-structure.

Definition 1.26 (theory) A theory (or L-theory if the language is not obvious from the context) is a
set of sentences in the language L.

Definition 1.27 (theory of a structure) The theory of M is the set of all L-sentences satisfied by M .

Notation. We write Th(M) or Σ(M) for the theory of M .

Definition 1.28 (model of a theory) Let Σ be a theory. We say thatM is a model of Σ ifM satisfies
every sentence of Σ.

Definition 1.29 (semantic consequence) Let Λ be a set of formulas. If every structure that satisfies
Λ also satisfies the formula ϕ, we say that ϕ is a semantic consequence of Λ and we write Λ |= ϕ.

Definition 1.30 (satisfiability) A set of L-formulas is satisfiable if it is satisfied by some L-structure.

Remark 1.31 (link between satisfiability and semantic consequence) For a sentence σ, one has Λ |=
σ if and only if Λ ∪ {¬σ} is not satisfiable.





CHAPTER 2

SEMANTIC CONSEQUENCE, SYNTACTIC CONSEQUENCE
AND THE COMPLETENESS THEOREM

The notion of satisfaction of a sentence σ in a structure M , using the interpretation of the language
in M , provides a notion of semantic consequence (i.e. related to the meaning of sentences): we write
Σ |= σ if, given a set of sentences Σ, every structure that satisfies Σ also satisfies the sentence σ. In this
Chapter, we define a notion of syntactic consequence (i.e. related to general deduction rules between
sentences, regardless of their possible interpretations in a particular structure): we shall write Σ ` σ if
there is a formal proof of σ from the axiom system Σ. Gödel’s Completeness Theorem (Theorem 2.24)
asserts that these two notions of consequence actually coincide.

2.1 Logical axioms: tautologies, equality axioms and ∃ axioms.
We fix a given language L and introduce the logical axioms that will be used to define formal proofs.

These axioms are of three kinds: tautologies, equality axioms and existential quantifier axioms.

Definition 2.1 (formula of sentential logic) Let S be a countable set whose elements are called sen-
tential variables a1, a2, . . . . The set of sentential formulas is the smallest set containing the sentential
variables and such that if B and C are sentential formulas, then ∧BC (written B ∧ C) and ¬B are
also sentential formulas.

A sentential formula is a finite word in the alphabet S ∪ {¬,∧} (from which we define the symbols
∨, → and ↔), constructed inductively: one begins with sentential formulas and apply ∧ and ¬. The
complexity c(A) of a sentential formula is defined inductively: it is 0 for variables, 1+ c(A) for ¬A and
1 + max(c(A), c(B)) for A ∧ B. We write A(a1, . . . , an) for a sentential formula where the sentential
variables appearing in A are among a1, . . . , an. Sentential variables are thought of as sentences having
truth value either 0 or 1.

Definition 2.2 (truth function of a sentential formula) To every sentential formula A is associated a
truth function fA from {0, 1}N to {0, 1} that maps a choice (t1, t2, . . . ) for the truth values of all the
sentential variables (a1, a2, . . . ) of S to a truth value fA(t1, t2, . . . ) of A. The values of fA are defined
inductively on the complexity of A: if A is a sentential variable an, then fA(t1, . . . , tn, . . . ) = 1 if and
only if tn = 1. If A is ¬B, then fA = 1− fB. If A is B ∧ C, then fA = fBfC .

Definition 2.3 (sentential tautology) A sentential formula A is a tautology if fA = 1.

Exercise 2.4 If A and B are sentential formulas, compute fA∨B, fA→B and fA↔B and show that
A ∨ ¬A, A→ (B → A), (A ∧B)→ A and (A→ B)↔ (¬B → ¬A) are tautologies.

Given a sentential formula A(a1, . . . , an) and L-formulas ϕ1(x̄), . . . , ϕn(x̄), we define A(ϕ1, . . . , ϕn)
by replacing in A every occurence of ai by ϕi(x̄). This is an L-formula in free variables among x̄,
hence written A(ϕ1, . . . , ϕn)(x̄), and one can show by induction on the complexity of A that for every
L-structure M and ā in M ,

(1) M |= A(ϕ1, . . . , ϕn)(ā) ⇐⇒ fA(ϕM1 (ā), . . . , ϕMn (ā)) = 1,
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where ϕM (ā) is the truth value of ϕ(ā) in M , defined by

ϕM (ā) = 1 if M |= ϕ(ā), or ϕM (ā) = 0 if M 6|= ϕ(ā).

Definition 2.5 (L-tautology) An L-tautology is an L-formula of the form A(ϕ1, . . . , ϕn) obtained
from a sentential tautology A(a1, . . . , an). For instance, if ϕ and ψ are L-formulas, then ϕ ∨ ¬ϕ,
ϕ→ (ψ → ϕ) and (ϕ ∧ ψ)→ ϕ are L-tautologies.

Lemma 2.6 An L-tautology is universally true.

Proof. Use (1).

Definition 2.7 (equality axioms) The following sentences are called equality axioms in L.
1. ∀x(x = x),
2. ∀x∀y(x = y → y = x),
3. ∀x̄∀ȳ

(
x̄ = ȳ → f(x̄) = f(ȳ)

)
for every function f symbol in L.

4. ∀x̄∀ȳ
[(
x̄ = ȳ ∧ r(x̄)

)
→ r(ȳ)

]
for every relation symbol r in L.

Remark. Transitivity of equality follows from 4. applied to the relation symbol =.

Lemma 2.8 Equality axioms are universally true.

Proof. Immediate from the assumption that = is always interpreted by usual equality.

Definition 2.9 (existential quantifier axioms) The existential quantifier axioms are sentences of the
form ∃xψ ↔ ∃x¬¬ψ where ψ is a formula, or of the form ϕ((t, x2, . . . , xn))→ ∃x1ϕ where ϕ(x1, . . . , xn)
is a formula and t(x1, . . . , xn) a term such that the terms t, x2, . . . , xn are compatible with ϕ.

Lemma 2.10 Existential quantifier axioms are universally true.

Proof. All the formulas involved are in free variables among x̄. If M |= ϕ((t, x2, . . . , xn))(ā) holds
for some L-structure M and ā = (a1, . . . , an) in M , then one has M |= ϕ(tM (ā), a2, . . . , an) by the
Substitution Lemma for formulas, so one has M |= (∃x1ϕ)(ā).

2.2 Deduction rules: modus ponens and generalisation rule
Definition 2.11 (deduction by modus ponens) Let ϕ1, ϕ2 and ψ be formulas. We say that ψ is de-
duced by modus ponens from ϕ1 and ϕ2 if ϕ2 is the formula ϕ1 → ψ.

Definition 2.12 (deduction by generalisation) Let ϕ and ψ be formulas. We say that ψ is deduced
by generalisation from ϕ if ϕ is of the form ϕ1 → ϕ2 and ψ is the form ϕ1 → ∀xϕ2 for two formulas
ϕ1 and ϕ2 and some variable x that has no free occurence in ϕ1.

2.3 Formal proofs, syntactic consequences and coherence
Definition 2.13 (formal proof) Let Λ be a set of formulas, and ϕ a formula. A formal proof of ϕ
from Λ is a finite sequence of formulas ϕ1, . . . , ϕn where ϕn is ϕ and such that for all k 6 n, either ϕk
is in Λ, or ϕk is a logical axiom, or ϕk is deduced by modus ponens from two formulas ϕi and ϕj with
i < k and j < k, or ϕk is deduced by generalisation from ϕi with i < k. In that case, we say that Λ
proves ϕ.

Remarks. 1. ϕ(x̄) can have free variables x̄. From the generalisation rule, it follows that if there
is a formal proof of ϕ from Λ, then Λ actually proves ∀x̄ϕ (see exercise 2.15).

2. Reciprocally, if Λ proves a formula ∀xϕ, then Λ also proves ϕ (see exercise 2.15).
3. As every proof involves finitely many formulas, if Λ proves ϕ, then there is a finite subset Λ0 ⊂ Λ

such that Λ0 proves ϕ.
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Definition 2.14 (syntactic consequence) If there is a formal proof of ϕ from Λ, we say that ϕ is a
syntactic consequence of Λ, and we write Λ ` ϕ.
Notations. We write ` ϕ instead of {} ` ϕ, meaning that every set of formulas proves ϕ. If Λ1 and
Λ2 are two sets of formulas, we write Λ1 ` Λ2 if Λ1 ` ϕ2 for every ϕ2 ∈ Λ2.
Exercise 2.15 Let ϕ1, . . . , ϕn, ϕ and ψ be formulas and Λ a set of formulas, possibly empty.

1. (conjunction) If Λ ` {ϕ1, . . . , ϕn}, then Λ ` ϕ1 ∧ · · · ∧ ϕn.
2. (contrapositive) Λ ` ϕ→ ψ if and only if Λ ` ¬ψ → ¬ϕ.
3. (universal quantifier axiom) ` ∀x1ϕ → ϕ((t, x2, . . . , xn)) where ϕ(x1, . . . , xn), t is a term and

(t, x2, . . . , xn) are compatible with ϕ.
4. (∀ rule) Λ ` ϕ if and only if Λ ` ∀xϕ.
5. (introduction of ∃) If x has no free occurence in ψ and Λ ` ϕ→ ψ, then Λ ` ∃xϕ→ ψ.

Theorem 2.16 (a syntactic consequence is a semantic one) If Λ ` ϕ, then Λ |= ϕ.
Proof. Inductively on the length n of the proof. If n = 1, then ϕ is either in Λ, or a logical axiom,
hence universally true by Lemmas 2.6, 2.8 and 2.10. In both cases, Λ |= ϕ. Assume that ϕ1, . . . , ϕn−1
are semantic consequences of Λ. If ϕn is deduced by modus ponens from ϕi and ϕj = ϕi → ϕn and if
M is a model of Λ, then M |= ϕi and M |= ϕj , so M |= ϕn. If ϕn is deduced by the generalisation
rule, it is of the form α → ∀xβ with M |= α → β, hence M |= ∀x(α → β). Since x has no free
occurence in α, one has M |= α→ ∀xβ.

Definition 2.17 (coherence) A set of formulas Λ is contradictory if there is a formula ϕ such that
Λ ` ϕ and Λ ` ¬ϕ. Otherwise, it is coherent(1).
Remarks. 1. If Λ is contradictory, then Λ proves all formulas (use the tautology A→ (¬A→ B)).

2. If Λ is contradictory, there is a finite subset Λ0 ⊂ Λ which is contradictory. In particular, Λ is
coherent if and only if every finite subset of Λ is coherent.

3. The notion of coherence is syntactic. The corresponding semantic notion is satisfiability. A set Λ
of formulas that is satisfiable is coherent, for otherwise it would prove ∃x(x 6= x), so any model
M of Λ would satisfy ∃x(x 6= x) by Theorem 2.16.

Lemma 2.18 (Deduction Lemma) If Λ is a set of formulas, ϕ a formula and σ a sentence, then

Λ ∪ {σ} ` ϕ if and only if Λ ` σ → ϕ.

Proof. If Λ proves σ → ϕ, then Λ ∪ {σ} also does, so Λ ∪ {σ} proves ϕ by modus ponens. For the
reverse implication, let ϕ1, . . . , ϕn be a proof of ϕ from Λ ∪ {σ}. We show by induction on n that Λ
proves σ → ϕi for every i. If n = 1, then ϕ1 is either σ or in Λ or a logical axiom. In the first case,
the result follows from the tautology σ → σ. In the two last cases, one has Λ ` ϕ1, as well as the
tautology ϕ1 → (ϕ → ϕ1), from which Λ ` ϕ → ϕ1. Induction step: if ϕn is a logical axiom or in
Λ ∪ {σ}, we conclude as before. If ϕn is deduced by modus ponens from ϕi and ϕj = ϕi → ϕn, then
Λ ` σ → ϕi and Λ ` σ → (ϕi → ϕn). Using the tautology ((A→ B) ∧ (A→ (B → C)))→ (A→ C),
it follows that Λ ` σ → ϕn. If ϕn is deduced by generalisation, it is of the form α → ∀xβ, and we
have Λ ` σ → (α → β) by the induction hypothesis, that is Λ ` σ ∧ α → β, hence Λ ` σ ∧ α → ∀xβ
by generalisation (since x has no free occurence in either σ or α), that is Λ ` σ → (α→ ∀xβ).

Here is the syntactic analogue to Remark 1.31.
Corollary 2.19 (link between coherence and syntactic consequence) Let Λ be a set of formulas, and
σ a sentence. Λ proves σ if and only if Λ ∪ {¬σ} is contradictory.
Proof. If Λ proves σ, then so does Λ ∪ {¬σ}, so Λ ∪ {¬σ} is contradictory. Reciprocally, if Λ ∪ {¬σ}
is contradictory, then Λ ∪ {¬σ} proves every formula and in particular σ, so Λ proves ¬σ → σ by the
Deduction Lemma. From the tautology (¬A→ A)→ A, one deduces that Λ proves σ.

(1)Margaret Thomas made me realise that the wording cohérent/contradictoire is a French convention, whereas the
English one is consistent/inconsistent. Since I unfortunately began to use coherent/contradictory, I shall keep this
wording for sake of consistency.
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2.4 A coherent theory has a model
Let L be a fixed language and Σ an L-theory. If Σ has a modelM , then Σ is coherent. The purpose

of this section is to show the converse: a coherent theory has a model.

Definition 2.20 (Henkin witnesses of a theory) If C is a set of constant symbols of L, we say that
C is a set of Henkin witnesses for Σ if, for all formulas ϕ(x) (with at most one free variable x), there
is some c in C such that Σ proves ∃xϕ→ ϕ((c)).

We shall show
1. that adding constant symbols in the language L does not affect the coherence of Σ,
2. if Σ is coherent, how to build a coherent L ∪ C-theory ΣC containing Σ such that C is a set of

Henkin witnesses for ΣC ,
3. how to build a model of Σ using the constants in C.
We will restrict to the case where L is a countable language and the set of variables V is countable.

Lemma 2.21 (adding one constant symbol does not affect coherence) Let ϕ(x) be an L-formula and
c a constant symbol that is not in L. If Σ ` ϕ((c)) in L ∪ {c}, then Σ ` ϕ in L.

Proof. Let ϕ1, . . . , ϕn be an L ∪ {c}-proof of ϕ((c)) from Σ. Let y be a variable that does not appear
in any ϕi, and let ψi be obtained from ϕi by replacing any occurence of c by y. For each k 6 n, if
ϕk is a logical axiom in L ∪ {c} (tautology, equality axiom, existential quantifier axiom), then ψk is
a logical axiom in L of the same kind. If ϕk is deduced by modus ponens from ϕi and ϕj , then ψk
is deduced by modus ponens from ψi and ψj . If ϕk is α → ∀zβ with ϕi equal to the formula α → β,
then ψk is γ → ∀zδ with ψi equal to the formula γ → δ. It follows that ψ1, . . . , ψn is an L-proof of ψn
from Σ. But ψn is ϕ((y)), so Σ ` ∀yϕ((y)) by Exercise 2.15.4. As x is compatible with ϕ((y))(y) and
as ϕ((y))((x)) is precisely ϕ, one has Σ ` ϕ by Exercise 2.15.3.

Corollary 2.22 If Σ is a coherent L-theory, it is a coherent L∪C-theory for any set C of constants.

Proof. If Σ is contradictory as an L ∪ C-theory, then there are finitely many constants c1, . . . , cn in
C such that Σ is contradictory as an L∪ {c1, . . . , cn}-theory (and we may choose n minimal as Σ is a
coherent L-theory). It follows that Σ proves any L ∪ {c1, . . . , cn}-formula, and in particular ϕ((cn))
where ϕ(x) is x 6= x. By the previous Lemma, Σ proves x 6= x in the language L ∪ {c1, . . . , cn−1},
hence is contradictory, a contradiction to n being minimal.

Lemma 2.23 (Henkin’s completion) Let Σ be a coherent L-theory and C a countable set of constant
symbols. There exists an L ∪ C-theory ΣC that is coherent and contains Σ, such that C is a set of
Henkin witnesses for ΣC .

Proof. Let (cn)n>1 be an enumeration of C. As L∪C and V are countable, the set of L∪C-formulas
is also countable, so let (ϕn)n>1 be an enumeration of those L ∪ C-formulas having at most one free
variable. Relabelling the variables, we may write xn for the free variable of ϕn if it exists, or pick
any variable in V that we write xn otherwise, so that one can write ϕn(xn). We build a theory Σn

inductively starting with Σ0 = Σ and setting

Σn+1 = Σn ∪ {∃xnϕn → ϕn((cf(n)))}

where f(n) is the smallest natural number such that cf(n) appears in none of the finitely many formulas
of Σn \Σ that use constant symbols of C. We then define ΣC to be

⋃
n>1 Σn. The theory ΣC contains

Σ and has C as a set of Henkin witnesses by construction. We claim that ΣC is coherent, that is, that
Σn is a coherent L ∪ C-theory for every n by induction on n. It is true for n = 0 by Corollary 2.22.
If Σn+1 is contradictory, then one has

Σn ` ¬
(
∃xnϕn → ϕn((cf(n)))

)
,
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hence
Σn ` ∃xnϕn ∧ ¬ϕn((cf(n))),

and, by Lemma 2.21
Σn ` ∃xnϕn ∧ ∀xn¬ϕn(xn),

that is
Σn ` ∃xnϕn ∧ ¬∃xn¬¬ϕn(xn),

so, using the existential quantifier axiom, Σn proves ∃xnϕn ∧ ¬∃xnϕn(xn) and is contradictory.

Completeness theorem 2.24 (Gödel, 1930) Let Σ be a theory in a countable language L (using a
countable set of variables). The theory Σ is coherent if and only if it has a model.

Proof. By Lemma 2.23, there is a countable language LH ⊃ L and a coherent LH -theory ΣC ⊃ Σ
such that the set of all constant symbols C of LH is a set of Henkin witnesses for ΣC . We first build
a maximal theory with these properties. Let (σn)n>1 be an enumeration of all the LH -sentences. We
define Σn by induction on n by putting Σ0 = ΣC and

Σn+1 = Σn ∪ {σn} if Σn ∪ {σn} is coherent, or Σn+1 = Σn ∪ {¬σn} otherwise.

Note that if Σn is coherent and Σn ∪ {σn} is contradictory, then Σn ` ¬σn so Σn ∪ {¬σn} is coherent.
It follows that Σn+1 is coherent. Putting ΣH =

⋃
n>0

Σn, one has

(1) ΣH is a coherent LH -theory,
(2) ΣH contains ΣC , hence has C as a set of Henkin witnesses,
(3) ΣH is complete, i.e. for all LH -sentence σ, either σ or ¬σ is in ΣH (so σ ∈ ΣH iff ΣH ` σ).

Note that if c is a constant symbol, then ΣH proves ∃x(x = c), so there must exist a constant symbol
d different from c by construction (see Lemma 2.23) such that ΣH proves d = c. We define the relation
∼ on C by

c ∼ d ⇐⇒ c = d ∈ ΣH .

Claim 1 ∼ is an equivalence relation on the set C of constant symbols.

Proof of Claim 1. (reflexivity) If c = c is not in ΣH , then c 6= c is, by (2.4). But then ΣH proves
∃x(x 6= x) by the existential quantifier axiom, a contradiction with the first equality axiom.
(symmetry) If c = d is in ΣH but not d = c, then d 6= c hence (c = d) ∧ (d 6= c) are in ΣH , a
contradiction with the second equality axiom.
(transitiviy) Similary using the fourth equality axiom and the Remark after Definition 2.7.

Claim 2 C/ ∼ is an LH-structure.

Proof of Claim 2. We write M for C/ ∼ and for every c in C, we write c̃ for the class of c modulo ∼.
We define

cM = c̃.

For every n-ary relation symbol r, we define,

(c̃1, . . . , c̃n) ∈ rM ⇐⇒ r(c1, . . . , cn) ∈ ΣH .

This is well-defined since if c1 ∼ d1, . . . , cn ∼ dn and r(c1, . . . , cn) ∈ ΣH hold, then the fourth equality
axiom implies r(d1, . . . , dn) ∈ ΣH , so that the definition of rM does not depend on the choice of repre-
sentatives c1, . . . , cn for the classes c̃1, . . . , c̃n. Note that for the relation symbol =, the interpretation
=M coincide with equality on M . If f is an m-ary function symbol, then for all constant symbols
c1, . . . , cm, the sentence ∃xf(c1, . . . , cm) = x is in ΣH (by the first equality axiom and the existential
quantifier axiom), so there is a constant symbol c such that the sentence f(c1, . . . , cm) = c is in ΣH

(and the sentence f(d1, . . . , dm) = d is in ΣH for all di ∼ ci and d ∼ c by the third equality axiom).
We thus define

fM (c̃1, . . . , c̃m) = d̃ ⇐⇒ f(c1, . . . , cm) = d ∈ ΣH .
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Claim 3 (interpretation of a term) Let t be a term and c a constant symbol. Then

M |= t = c ⇐⇒ t = c ∈ ΣH .

Proof of Claim 3. By induction on the complexity c(t). It is true for constants by definition of ∼, and
if t is the term ft1 · · · tn, by (2) there exist constant symbols c1, . . . , cn such that ti = ci ∈ ΣH for all
i, so that we have tMi = cMi by the induction hypothesis. It follows that

M |= t = c ⇐⇒ fM tM1 · · · tMp = cM ⇐⇒ fMcM1 · · · cMp = cM ⇐⇒ f(c1, . . . , cp) = c ∈ ΣH .

By the third equality axiom, one has f(c1, . . . , cp) = c ∈ ΣH if and only if f(t1, . . . , tp) = c ∈ ΣH .

Claim 4 (satisfaction of a sentence) For a sentence σ, one has

M |= σ ⇐⇒ σ ∈ ΣH .

Proof of Claim 4. By induction on the complexity of σ. If r(t1, . . . , tn) is an atomic sentence and
c1, . . . , cn are constant symbols such that ti = ci ∈ ΣH for every i, then tMi = cMi by Claim 3, so

M |= r(t1, . . . , tn) ⇐⇒ (tM1 , . . . , tMn ) ∈ rM ⇐⇒ (cM1 , . . . , cMn ) ∈ rM ⇐⇒ r(c1, . . . , cn) ∈ ΣH .

By the fourth equality axiom, r(c1, . . . , cn) ∈ ΣH if and only if r(t1, . . . , tn) ∈ ΣH .
If σ is the sentence α ∧ β, then

M |= α ∧ β ⇐⇒ M |= α and M |= β ⇐⇒ α ∈ ΣH and β ∈ ΣH =⇒ α ∧ β ∈ ΣH .

Since ΣH is complete, the converse of the last implication also holds.
If σ is ¬α, the result holds again by completeness of ΣH .
If σ is ∃xα for a formula α(x) of lower complexity, then

M |= σ ⇐⇒ there exists c ∈M such that α((c)) ∈ ΣH .

By the existential quantifier axiom and modus ponens, this implies ∃xα ∈ ΣH . Conversely, if ∃xα ∈
ΣH , then there is a constant symbol c such that α((c)) ∈ ΣH by (2) and modus ponens.

Claim 5 The L-theory Σ has a model.

Proof of Claim 5. By the previous Claim, M is an LH -structure that is a model of ΣH . As L ⊂ LH ,
the restriction LM of LMH to the language L provides a natural interpretation for L inM . As Σ ⊂ ΣH ,
the structure (M,LM ) is a model of Σ.

Remarks. 1. This shows in particular that Σ |= σ if and only iff Σ ` σ.
2. We have shown that Σ has a model M that embeds into N, i.e. that is countable. In particular,

the Lfield-theory of the real numbers R with its natural structure has a countable model F that
satisfies all the Lfield-sentences satisfied by R.

3. (The hypotheses ‘L and V are countable’ can be removed assuming the Axiom of Choice, one of
whose equivalent formulations asserts that any set can be well ordered: under this assumption,
instead of enumerating formulas (ϕn)n>1 and building the theories Σn inductively on the natural
number n as is done in Lemma 2.23 and Theorem 2.24, one chooses a well-ordering (ϕα)α>1 on
the set of formulas and builds Σα by transfinite induction (see Chapter 4).)

Corollary 2.25 (Compactness Theorem) Let L be a countable language, and Σ a theory using count-
ably many variables. Then Σ has a model if and only if every finite subset Σ0 ⊂ Σ has a model.

Proof. If M is a model of Σ, then M is also a model of every (finite) subset of Σ. The converse is the
important direction. One has

Σ has a model ⇐⇒ Σ is coherent
⇐⇒ every finite subset of Σ is coherent
⇐⇒ every finite subset of Σ has a model.
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Remark. The Compactness Theorem is a semantic corollary of the Completeness Theorem.

Corollary 2.26 Let L be a countable language and Σ a theory using countably many variables. If Σ
has finite models of arbitrary large cardinalities, then Σ has an infinite model.

Proof. For every natural number n > 1, let Mn be a model of Σ having size at least n. Let C = {cn :
n > 1} be a set of new constant symbols and let L = L ∪ C. Let

Σ = Σ ∪ {cn 6= cm : n 6= m}.

If Σ0 ⊂ Σ is a finite subset, then there is a natural number k and a finite Σ0 ⊂ Σ of size at most k
such that Σ0 ⊂ Σ0∪{cn 6= cm : n 6= m, n,m 6 k}. If follows that Mk is a model of Σ0 in the language
L (one interprets the constants {cn : n 6 k} by pairwise distinct elements of Mk and the constants
{cn : n > k} by any element for n > k). As this holds for any finite subset Σ0 ⊂ Σ, the theory Σ has
a model (M, L̄M ) by Corollary 2.25. M must be infinite since the interpretations of the constants of
C are pairwise disjoint, and M is also a model of Σ.

We finish by giving an explanation for the name of the Compactness Theorem 2.25. Let L be a
language and SL (or simply S) the space of complete satisfiable L-theories using variables in V (recall
that Σ is complete if for all L-sentence σ, either σ or ¬σ is in Σ). We provide S with a topology by
defining a basis of open sets. For any L-sentence σ, we define the basic open set [σ] by

[σ] =
{

Σ ∈ S : σ ∈ Σ
}
.

For any two L-sentences σ and τ , using completeness and satisfiability of any Σ ∈ S, one has

[σ] ∩ [τ ] =
{

Σ ∈ S : σ ∈ Σ and τ ∈ Σ
}

=
{

Σ ∈ S : σ ∧ τ ∈ Σ
}

= [σ ∧ τ ].

It follows that the set of basic open sets is closed under finite intersections and does form a basis of
open sets. By definition, an open subset of S is of the form

⋃
σ∈Σ[σ] for any set Σ of L-sentences.

Also, using the completeness of any Σ ∈ S again, one has

S \ [σ] =
{

Σ ∈ S : σ /∈ Σ
}

=
{

Σ ∈ S : ¬σ ∈ Σ
}

= [¬σ].

It follows that any basic open set [σ] is clopen (i.e. both closed and open) and that a closed subset of
S is of the form

⋂
σ∈Σ[σ] for any set Σ of L-sentences. We write S(Σ) this closed subset, which is the

subset of S whose elements contain Σ.
Remark. With these notations, an L-theory Σ is satisfiable if and only if S(Σ) is not empty.
Proof. If S(Σ) is not empty, there is a satisfiable theory that contains Σ, so Σ is satisfiable. If Σ has
a model M , then Th(M) is a complete satisfiable theory that contains Σ hence belongs to S(Σ) .

Corollary 2.27 If L and V are countable, S is a compact Hausdorff topological space.

Proof. If Σ1 and Σ2 are two distinct elements of S, there must be a sentence σ in Σ1 \ Σ2. As
Σ2 is complete, one has ¬σ ∈ Σ2, so that [σ] and [¬σ] are disjoint neighbourhoods of Σ1 and Σ2
respectively. This shows that S is Hausdorff. To show that S is compact, let

⋂
σ∈Σ[σ] = S(Σ) be

an empty intersection of closed sets. By the above remark, Σ is not satisfiable. By the Compactness
Theorem, there is a finite subset Σ0 ⊂ Σ that is not satisfiable, so that

⋂
σ∈Σ0 [σ] is empty.

Remarks. 1. An example. In the language of fields Lfield, the space SLfield
is a set, some elements

of which are: the theory of the field Q of rationals, the theory of R, the theory of the field C of
complex numbers, the theory of the finite field Fpn for every n etc.

2. S(Σ) is a closed subset of S hence compact for the induced topology.
3. One could have similarly defined a topology on the space of coherent complete L-theories and

showed this space to be compact Hausdorff using the simple fact that a contradictory theory
has a contradictory finite subset (without invoking Gödel’s Completeness Theorem). Gödel’s
Completeness Theorem asserts that this latter topological space coincides with the former space
S of satisfiable complete theories.





CHAPTER 3

THE COMPACTNESS THEOREM

The Compactness Theorem states that a countable theory Σ has a model provided that every finite
subset Σ0 ⊂ Σ has a model MΣ0 . It is a semantic theorem that we derived from the Completeness
Theorem using the fact that a formal proof involves only finitely many formulas. We shall construct
a model of Σ built by an ultraproduct of the models MΣ0 , the ultraproduct construction being an
important tool to build a structure M out of a family of structures Mi by controlling the theory of
M in terms of the theories of Mi. This will provide another proof of the Compactness Theorem that
does not rely on the syntactic notions defined in Chapter 2.

3.1 Filter, ultrafilter
Definition 3.1 (filter) Let I be a set. A filter on I is a non-empty set F consisting of subsets of I
such that

1. the empty set is not an element of F ,
2. (finite intersection property) if J and K are in F , then so is J ∩K,
3. (extension property) if J is in F , then so is any bigger K ⊃ J .

Remark. These are properties that one would expect from very large subsets of I.

Definition 3.2 (generated filter) Let I be a set and A a set of subsets of I. If, for all finitely many
A1, . . . , An in A, the intersection A1 ∩ · · · ∩An is non-empty, then the set of all B ⊂ I such that there
exists n and A1, . . . , An in A with A1 ∩ · · · ∩An ⊂ B is a filter on I called the filter generated by A.

Examples 3.3 1. (trivial filters) For any non-empty subset J ⊂ I, the set singleton {J} generates
a filter. The filters of this kind are called the principal filters on I, or the trivial ones.

2. (Fréchet filter) For any infinite set I, the set of cofinite subsets of I (those whose complement
in I is finite) is called the Fréchet filter on I.

3. (filter of neighbourhoods) Let X be a topological space and x a point of X. A subset V of X is
called a neighbourhood of x if there exists an open set O that contains x such that O ⊂ V . The
set V(x) of neighbourhoods of x is a filter on X. If the topology on X is generated by a basis of
open sets B, then V(x) is generated by those elements of B that contain x.

4. (filter of conegligible sets) Let X be a set, A an algebra of subsets of X (i.e. closed under finite
intersections and taking complements) and µ a non-zero finitely additive measure on (X,A).
That is, µ is a map from A to [0,+∞] such that µ(∅) is zero and

µ(A ∪B) = µ(A) + µ(B) for all pairwise disjoint A and B in A.

An element A of A has comeasure zero if µ(X \ A) is zero. A subset B ⊂ X is conegligible if
there exists an A ∈ A having comeasure zero such that A ⊂ B. The set of elements of A having
comeasure zero is closed under finite intersections and does not contain the empty set as µ is
non zero, hence generates a filter on X that corresponds to all conegligible subsets of X. In
particular, if (X,B, µ) is a complete measure space, the conegligible elements of B form a filter
on X.
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Definition 3.4 (ultrafilter) An ultrafilter U on I is a filter that is maximal for inclusion.

Lemma 3.5 (characterisation of ultrafilters) Let F be a filter on I. F is an ultrafilter if and only if
for every subset J ⊂ I, either J or its complement I \ J belongs to F

Proof. Assume that for every J ⊂ I either J or I \ J belongs to F . Let F ′ ⊃ F be a filter on I and
let J ∈ F ′. If I \ J is in F , then J ∩ (I \ J) is in F ′, a contradiction. So J is in F and F is maximal.
Conversely, if F is an ultrafilter, let J ⊂ I. If I \ J is not in F (in particular J is not empty), then
we claim that A = F ∪ {J} generates a filter: as F is closed under finite intersection, it is enough to
show that F ∩ J is non-empty for any F in F . But if F ∩ J = ∅, then F ⊂ I \ J , so I \ J is in F , a
contradiction. We have shown that F ∪ {J} generates a filter, so J is in F by maximality of F .

Example 3.6 The filter generated by a singleton {x} of I is a principal ultrafilter. Reciprocally,
every principal ultrafilter is generated by a singleton.

Remark. An ultrafilter U induces a measure µ on the (σ-)algebra of all subsets of X defined for every
Y ⊂ X by putting

µ(Y ) = 1 if Y ∈ U or µ(Y ) = 0 if Y /∈ U .

Lemma 3.7 (characterisation of non-trivial ultrafilters) Let I be an infinite set and U an ultrafilter
on I. U is non-principal if and only if it contains all cofinite subsets of I.

Proof. If U contains all cofinite subsets of I, it cannot be principal for otherwise it would contain a
singleton {x} (the generating set), but also its cofinite complement X \ {x}, hence the empty set, a
contradiction. If U is non-principal, U does not contain any singleton so U contains the complement
of any singleton by Lemma 3.5, hence any finite intersection of such sets, that is, any cofinite set.

Lemma 3.8 (obtainment of ultrafilters) Every filter F on I can be extended to an ultrafilter on I.

Proof. Let C be the set of all filters on I extending F . Together with inclusion, C is a partially ordered
set. We shall use Zorn’s Lemma, one of the equivalent formulations of the Axiom of Choice, to show
that C has a maximal element.

Zorn’s Lemma 3.9 Any non-empty partially ordered set C that is inductive (that is,
each of whose totally ordered subset has an upper bound in C) has a maximal element.

Let F = {Fj : j ∈ J} be a totally ordered subset of C. We write FJ for
⋃
j∈J Fj and claim that

FJ is an upper bound of F in C. The set FJ is a set of subsets of I, contains all the elements of F ,
and of Fj for every j ∈ J , does not contain the empty set (for otherwise one Fj would contain it)
and satisfies the extension property (for any element of FJ belongs to a given Fj that satisfies the
extension property). If A and B are elements of FJ , say A ∈ Fj and B ∈ Fk, as F is totally ordered,
one has for example Fj ⊂ Fk, so that A ∩ B ∈ Fk hence A ∩ B ∈ FJ . This shows that FJ is a filter
on J extending F and all elements of F. By Zorn’s Lemma, C has a maximal element, which is an
ultrafilter extending F .

Remark. This extension is hardly ever unique. Choosing one is choosing a precise notion of a ‘very
large’ subset of I.

3.2 Cartesian product, reduced product, ultraproduct
Definition 3.10 (Cartesian product of structures) Let (Mi)i∈I be a family of L-structures. The prod-
uct of (Mi)i∈I is the L-structure (M,LM ) such that

1. M =
∏

i
Mi,

2. cM = (cMi)i∈I for every constant symbol c,
3. fM

(
a1, . . . , an

)
=
(
fMi(a1

i , . . . , a
n
i )
)
i∈I for every n-ary function symbol f and a1, . . . , an in

∏
i
Mi,
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4. (a1, . . . , an) ∈ rM ⇐⇒
(
(a1
i , . . . , a

n
i ) ∈ rMi for all i in I

)
, for all n-ary relation symbol r in R

and for all a1, . . . , an in
∏

i
Mi.

Remarks. 1. If there exists a constant symbol c in L, then
∏

i
Mi is non-empty: being given the

family (Mi)i∈I , we are also given the family (cMi)i∈I . In general though, and in the case where
the index set I is infinite, one may need the Axiom of Choice to ensure that

∏
i
Mi is non-empty.

2. For the equality symbol, one has (ai)i∈I =M (bi)i∈I if and only if ai =Mi bi for all i ∈ I, so =M

is the usual equality in
∏

i
Mi.

3. For every coordinate i0, the i0th projection
∏

i
Mi −→Mi0 is a morphism.

Example 3.11 Let us consider R as an Logp-structure. The Logp-structure on Rn is obtained by
interpreting e0 as (0, . . . , 0), + as coordinatewise addition, − as coordinatewise inverse, and 6 as
(a1, . . . , an) 6Rn (b1, . . . , bn) if and only if ai 6R bi for all i. Similarly for the infinite product RN.

Lemma 3.12 (equivalence relation induced by a filter) Let (Mi)i∈I be a family of L-structures, F a
filter on I and let ∼F be the relation on

∏
i
Mi defined by

(ai)i∈I ∼F (bi)i∈I ⇐⇒
{
i ∈ I : ai = bi

}
∈ F .

Then ∼F is an equivalence relation that is compatible with any n-ary function fM and n-ary relation
rM , that is,

the equivalences a1 ∼F b1, . . . , an ∼F bn imply fM (a1, . . . , an) ∼F fM (b1, . . . , bn), and

a1 ∼F b1, . . . , an ∼F bn imply {i ∈ I : (a1
i , . . . a

n
i ) ∈ rMi} ∈ F ⇐⇒ {i ∈ I : (b1i , . . . bni ) ∈ rMi} ∈ F .

We write
∏
F
Mi for the quotient space modulo ∼F , and aF for the equivalence class of any a ∈

∏
i
Mi.

Proof. As I belongs to F , the relation ∼F is reflexive. Symmetry follows from symmetry of equality.
If a ∼F b and b ∼F c, one has{

i ∈ I : ai = bi
}
∩
{
i ∈ I : bi = ci

}
⊂
{
i ∈ I : ai = ci

}
, hence

{
i ∈ I : ai = ci

}
∈ F ,

so a ∼F c, and ∼F is transitive.
If a1 ∼F b1, . . . , an ∼F bn, one has{

i ∈ I : a1
i = b1i

}
∩ · · · ∩

{
i ∈ I : ani = bni

}
⊂
{
i ∈ I : fMi(a1

i , . . . , a
n
i ) = fMi(b1i . . . , bni )

}
∈ F ,

so fM (a1, . . . , an) ∼F fM (b1, . . . , bn). Similarly, one has{
i ∈ I : a1

i = b1i

}
∩ · · · ∩

{
i ∈ I : ani = bni

}
∩
{
i ∈ I : (a1

i , . . . , a
n
i ) ∈ rMi

}
⊂
{
i ∈ I : (b1i , . . . , bni ) ∈ rMi

}
,

which proves the last statement.

Remark. If F is the Fréchet filter on an infinite set I, the relation a ∼F b holds if and only if ai = bi
for all but finitely many i in I. In the case where U is an ultrafilter on I, the relation a ∼U b holds if
and only if ai = bi holds for almost every i in I (relatively to the measure µU ).

Definition 3.13 (reduced product of structures) Let (Mi)i∈I be a family of L-structures, M their
product, and F a filter on I. The reduced product of (Mi)i∈I is the L-structure (MF , LMF ) such that

1. MF =
∏
F
Mi,

2. cMF =
(
cM
)
F

=
(
(cMi)i∈I

)
F for every constant symbol c,

3. fMF
(
a1
F , . . . , a

n
F

)
=
(
fM (a1, . . . , an)

)
F
for every n-ary function symbol and a1, . . . , an in

∏
i
Mi,

4. (a1
F , . . . , a

n
F ) ∈ rMF ⇐⇒

{
i ∈ I : (a1

i , . . . , a
n
i ) ∈ rMi

}
∈ F for every n-ary relation symbol r.

In the particular case where all the structures Mi are equal to N , one writes NF instead of
∏
F
N ,

and call NF a reduced power of N .
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Remarks. 1. By Lemma 3.12, the definitions of fMF
(
a1
F , . . . , a

n
F
)
and rMF

(
a1
F , . . . , a

n
F
)
do not

depend on the choice of a representative for every ajF , so MF is well-defined.
2. The projection

∏
i
Mi −→

∏
F
Mi is an L-morphism.

3. If F is the trivial filter {I}, then ∼F is equality on
∏

i
Mi so

∏
F
Mi equals

∏
i
Mi.

4. If F is a principal filter generated by {J} for some J ⊂ I, then
∏
F
Mi is isomorphic to

∏
j∈J

Mj .

In particular, for the filter Fi0 generated by the point {i0},
∏
Fi0

Mi is isomorphic to Mi0

(exercise).
Exercise 3.14 (An example: reduced product of rings) Consider R with its Lring-structure again.
The Lring-structure RN is the natural ring structure on the Cartesian power of R. Let F be a filter
on N. Show that there is an ideal I of RN such that the reduced power RF is precisely the quotient
ring RN/I. Show that if F is an ultrafilter, then the ideal I is maximal. Conversely, show that for
every ideal I of RN, there is a filter F on N such that RN/I equals RF .
Definition 3.15 (ultraproduct of structures) Let (Mi)i∈I be a family of L-structures, M their prod-
uct, and U an ultrafilter on I. The structure

∏
U
Mi is called the ultraproduct of (Mi)i∈I . In the

particular case where every Mi equals N , the structure NU is called an ultrapower of N .

3.3 Satisfaction in an ultraproduct
Łos’ Theorem 3.16 (satifaction in an ultraproduct) Let (Mi)i∈I be a family of L-structures,M their
product, U an ultrafilter on I and MU the ultraproduct

∏
U
Mi.

1. Let t be an L-term with no variable occurences. Then

tMU =
(
tM
)
U

=
((
tMi
)
i∈I

)
U
.

2. Let σ be a sentence. Then∏
U
Mi |= σ if and only if

{
i ∈ I : Mi |= σ

}
∈ U .

Remarks. 1. Let t(x1, . . . , xn) be a term, ϕ(x1, . . . , xn) a formula and a1, . . . , an elements of
∏

i
Mi.

Adding to the language n new constant symbols c1, . . . , cn that we interpret as a1
i , . . . , a

n
i in Mi

and hence as a1
U , . . . , a

n
U in

∏
U
Mi, one has

tMU (a1
U , . . . , a

n
U ) =

(
tMi(a1

i , . . . , a
n
i )
)
U
, and∏

U
Mi |= ϕ(a1

U , . . . , a
n
U ) if and only if

{
i ∈ I : Mi |= ϕ(a1

i , . . . , a
n
i )
}
∈ U .

2. It follows that
∏
U
Mi satisfies ϕ(a1

U , . . . , a
n
U ) if and only if Mi satisfies ϕ(a1

i , . . . , a
n
i ) for almost

every i ∈ I (with respect to the measure µU ).
Proof. We show that tMU equals (tM )U by induction on the complexity of t. If t is a constant symbol,
this follows from the definition of cNU . If t is the term ft1 · · · tn, where the terms t1, . . . , tn have lower
complexity, then

tMU = fMU (tMU
1 , . . . , tMU

n ) = fMU ((tM1 )U , . . . , (tMn )U ) =
(
fM (tM1 , . . . , tMn )

)
U =

(
tM
)
U .

Let us show the second point of Łos’ Theorem by induction on the complexity of σ. If σ is the atomic
sentence r(t1, . . . , tn), then 2. follows from the definition of rMU . If σ is the sentence σ1 ∧ σ2, then∏

U
Mi |= σ ⇐⇒

{
i ∈ I : Mi |= σ1

}
∈ U and

{
i ∈ I : Mi |= σ1

}
∈ U

⇐⇒
{
i ∈ I : Mi |= σ1

}
∩
{
i ∈ I : Mi |= σ2

}
∈ U

⇐⇒
{
i ∈ I : Mi |= σ1 and Mi |= σ2

}
∈ U .

⇐⇒
{
i ∈ I : Mi |= σ

}
∈ U .
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If σ is the sentence ∃xϕ for some formula ϕ(x), then
∏
U
Mi satisfies σ if and only if there exists

some aU in
∏
U
Mi such that

∏
U
Mi satisfies ϕ(a). Let c be a new constant symbol, and define its

interpretation in Mi to be ai. It follows that
∏
U
Mi satisfies ϕ(a) in L if and only if it satisfies the

sentence ϕ((c)) in L ∪ {c} (note that ϕ((c)) and ϕ(x) have the same complexity). By the induction
hypothesis, one has∏

U
Mi |= ϕ((c)) ⇐⇒ {i ∈ I : Mi |= ϕ((c))} ∈ U ⇐⇒ {i ∈ I : Mi |= ϕ(ai)} ∈ U .

As {i ∈ I : Mi |= ϕ(ai)} ⊂ {i ∈ I : Mi |= ∃xϕ}, the latter set belongs to U . To show the reverse
implication, let J = {i ∈ I : Mi |= ∃xϕ} be in U . Using the Axiom of Choice, one may choose an
element (ai)i∈I in

∏
i
Mi such that for every i in J , one has Mi |= ϕ(ai), and ai is arbitrary in Mi for

i ∈ I \ J . It follows that the set {i ∈ I : Mi |= ϕ(ai)} contains J and hence is in U , and we finish as
previously, adding one new constant symbol c to the language and interpreting cMi by ai, hence cMU

by (ai)U .
Note that all of the above holds if U is merely a filter on I. If σ is the sentence ¬τ , then∏

U
Mi |= σ ⇐⇒

∏
U
Mi 6|= τ ⇐⇒

{
i ∈ I : Mi |= τ

}
6∈ U .

Since U is an ultrafilter, one has{
i ∈ I : Mi |= τ

}
6∈ U ⇐⇒

{
i ∈ I : Mi 6|= τ

}
∈ U ,

so that one has
∏
U
Mi |= σ if and only if

{
i ∈ I : Mi |= ¬τ

}
∈ U .

Example 3.17 (model of non standard analysis) Let R be considered as an Lring-structure, and let
F be a filter on N and U an ultrafilter on N. By Exercise 3.14, the reduced power RF is a ring and
the ultrapower RU is a field. The latter statement can be deduced again by Łos’ Theorem: RU has
the same Lring-theory as R: it is a field of characteristic 0, every polynomial with coefficient in RU
and odd degree has a root in RU . The map i : R −→ RU that maps a real number x to the element
(x, x, x, . . . )U is an Lring-embedding, so that R can be seen as a subfield of RU . One can define a
ordering 6 on RU by setting

a 6 b ⇐⇒ b− a is a square ⇐⇒ RU |= ϕ(a, b),

where ϕ is the formula ∃z(y − x = z2). As ϕ defines a dense linear ordering on R that is compatible
with the field structure of R, properties which are expressible by a Lring-sentence, it follows from
by Łos’ Theorem that 6 also defines a dense linear ordering on RU that is compatible with the field
structure on RU and extends the natural ordering on R (i.e. such that x 6 y implies i(x) 6 i(y)
for all real numbers x and y). If the ultrafilter U is principal, then RU is isomorphic to R. If U
is non-principal (i.e. contains every cofinite subset of N), then RU has infinitesimal numbers i.e.
elements ε that satisfy 0 < ε < x for every real number x > 0, for instance

ε =
(

1, 1
2 ,

1
3 ,

1
4 , . . .

)
U
,

as 0 < 1
n
< x holds for cofinitely many n in N. It also has infinite numbers i.e. elements ω satisfying

ω > x for every real number x, for instance

ω = 1
ε

= (1, 2, 3, 4, . . . )U .

Note that as RU is a field, every non-zero element has a unique multiplicative inverse. As ε · ω = 1,
we may write ω = ε−1 without any ambiguity.

Corollary 3.18 (Compactness Theorem) Let Σ be a theory each of whose finite subset Σ0 ⊂ Σ has a
model. Then Σ has a model.
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Proof. In the particular case where the language is countable, let (σn)n>1 be an enumeration of Σ and
let Mn be a model of {ϕ1, . . . , ϕn} for every natural number n, so that if σ is in Σ, one has Mn |= σ

for all but finitely many n ∈ N. Then, for any ultrafilter U on N extending the Fréchet filter, the
ultraproduct

∏
U
Mn is a model of Σ by Łos’ Theorem.

General case. Let I be the set of all finite subsets of Σ, and, for every i in I, let Mi be a model
of i. For every sentence σ in Σ, let J(σ) be the subset of I each of whose elements contain σ, so
that Mi |= σ as soon as i ∈ J(σ). For any ultrafilter U extending F = {J(σ) : σ ∈ Σ} (note that
J(σ1) ∩ · · · ∩ J(σn) contains {σ1, . . . , σn} hence is never empty, so F generates a filter that can be
extended to an ultrafilter), the ultraproduct

∏
U
Mi is a model of Σ by Łos’ Theorem.
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ENUMERATION AND SIZE OF INFINITE SETS

4.1 Ordinal numbers
Let X be a set. A binary relation 6 on X is called an ordering, or partial ordering, if it is reflexive

antisymmetric and transitive. A binary relation < on X is called a strict ordering if it is antireflexive
(i.e. if x 6< x for any x) and transitive. Every ordering 6 on X induces a natural strict ordering on
X, written <, defined by x < y if and only if x 6 y and x 6= y. Conversely, every strict ordering < on
X induces an ordering, written 6, defined by x 6 y if and only if x < y or x = y. An ordering 6 on
X is linear if for every x and y in X, either x 6 y or y 6 x hold.

Definition 4.1 (well-ordering) A well-ordering on X is an ordering such that every non-empty subset
Y ⊂ X has a least element (i.e. an element y ∈ Y such that y 6 z for all z ∈ Y ).

Remark. A well-ordering on X is a linear ordering on X as every pair {x, y} has a least element.
Conversely, a linear ordering of X is a well-ordering of X if and only if there is no infinite strictly
decreasing chain of elements of X.

Definition 4.2 (transitive set) The set X is transitive if every element of X is a subset of X.

Remark. Transitivity of X ensures that if y ∈ X and z ∈ y, then z ∈ X. In particular, if ∈ defines a
(strict) ordering on X, then X is transitive.

Definition 4.3 (ordinal number) The set X is an ordinal number if it is transitive and ∈ is a strict
ordering on X that induces a well-ordering on X.

We shall denote ordinal numbers by Greek letters α, β, γ, . . . .

Lemma 4.4 1. ∅ is an ordinal, written 0.
2. If β is an ordinal and α ∈ β, then α is an ordinal.
3. If β is an ordinal, β equals the set [0, β) of ordinals α such that α ∈ β.
4. If α and β are distinct ordinals, then α ⊂ β iff α ∈ β.

Proof. 1. An ordinal number has been defined by universal properties, hence hold of the empty set.
2. If β is an ordinal, α ∈ β and γ ∈ α, for any δ ∈ γ, the elements γ and δ belong to β by transitivity
of the set β. It follows that δ ∈ α by transitivity of ∈, so the set α is transitive. If a, b and c are
elements of α, then a, b, c are elements of β by transitivity of β; if a ∈ b and b ∈ c, then a ∈ c by
transitivity of ∈, so ∈ is transitive on α. As the relation ∈ on α is the restriction of the relation ∈ on
β, ∈ is a well-ordering on α.
3. Follows from 2.
4. One direction follows from the transitivity of β. Conversely, if α ⊂ β and α 6= β, then β \ α
is non-empty hence has a least element γ. We claim that α = {x ∈ β : x ∈ γ}: the inclusion
{x ∈ β : x ∈ γ} ⊂ α follows from the minimality of γ and conversely, if x ∈ α, one has either γ ∈ x
(hence γ ∈ α, a contradiction) or γ = x (same contradiction again) or x ∈ γ. On the other hand, one
also has γ = {x ∈ β : x ∈ γ}, and it follows that α = γ ∈ β (by definition of γ).
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We define a strict ordering < on the class of all ordinals by setting for any two ordinals α and β,

α < β if and only α ∈ β.

It follows from Lemma 4.4 that the corresponding partial ordering is

α 6 β if and only if α ⊂ β.

Theorem 4.5 (6 is a linear ordering on the class of ordinals) For any two ordinals α and β, one has

either α 6 β, or β 6 α.

Proof. γ = α ∩ β is transitive (every element of α ∩ β is a subset of α ∩ β), and well-ordered by ∈:
it is an ordinal satisfying γ ⊂ α and γ ⊂ β. If these inclusions are both strict, then γ ∈ α ∩ β by
Lemma 4.4, so γ ∈ γ, a contradiction. One thus has either α ∩ β = α or α ∩ β = β.

Remarks. 1. (the class of ordinals is well-ordered) For every non-empty set A of ordinals, let
⋂
A

be the intersection of all α ∈ A. Being an intersection of ordinals,
⋂
A is an ordinal, and a lower

bound of A. If
⋂
A were not an element of A, one would have

⋂
A < a by Theorem 4.5 (hence⋂

A ∈ a) for every a in A, hence
⋂
A ∈

⋂
A, a contradiction:

⋂
A is the least element of A, and

inf A = minA =
⋂
A.

2. (every non-empty set of ordinals has an upper bound) For every set A of ordinals,
⋃
A is an

ordinal. If x ∈
⋃
A, then x ∈ α for some α ∈ A. If y ∈ x, then y ∈ α since α is an ordinal, so

⋃
A

is transitive. Any three elements of
⋃
A must belong to one α ∈ A (since every three ordinals

are linearly ordered by Theorem 4.5), so ∈ is a transitive relation in
⋃
A. If B is a non-empty

set of elements of
⋃
A, then

⋂
B is the least element of B by the above remark. So

⋃
A is an

upper bound of A (in the class of ordinals), and the least such, as β <
⋃
A implies β ∈ α for

some α ∈ A. This shows
supA =

⋃
A.

Theorem 4.6 Every well-ordered set is isomorphic (as an ordered set) to a unique ordinal number.

Definition 4.7 (successor ordinal, limit ordinal) For every ordinal α, the set α∪{α} is also an ordinal,
written α + 1, called the successor ordinal of α. If λ is not the successor of any ordinal (and not 0),
λ is called a limit ordinal and λ is the set

⋃
α<λ α.

Note that if β = {α : α < β} holds for every ordinal, but λ =
⋃
{α : α < λ} holds if and only if λ is

a limit ordinal.

Theorem 4.8 (transfinite induction) Assume that C is the class of ordinals such that
1. 0 is an element of C.
2. if α is an element of C then α+ 1 also.
3. if λ is a limit ordinal such that α is an element of C for every α < λ, then λ is an element of C.

Then C is the class of all ordinals.

Proof. If there is an ordinal γ that is not an element of C, as γ is well-ordered, there is a least β 6 γ

that is not an element of C. Either γ is a successor ordinal γ = α + 1, but then α hence α + 1
belong to C by 2, a contradiction; of γ is a limit ordinal. As γ = [0, λ), one must have γ ∈ C by 3, a
contradiction; or γ is 0, contradicting 1.

Hence, practically, the class of ordinals is constructed by transfinite induction, starting from 0 = ∅,
and applying successor steps

1 = 0 + 1, 2 = 1 + 1, 3 = 2 + 1 etc.

then a limit step
ω = {1, 2, 3, . . . },
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then successor steps again

ω + 1, ω + 2 = (ω + 1) + 1, ω + 3 = (ω + 2) + 1 etc.

then a limit step
ω + ω = ω · 2 = {ω + 1, ω + 2, ω + 3, . . . }.

The first ordinal numbers are 0, 1, 2, . . . , n, . . . , ω, ω+ 1, ω+ 2, . . . , ω+n, . . . , ω2, ω2 + 1, . . . , ω3, . . . ,
ωn, . . . , ω2, . . . , ωn, . . . , ωω, ωω+1, . . . , ωω+ω, . . . , ωω+ωn, . . . , ωω2, . . . , ωωn, . . . , ωω+1, . . . , where the
operations α+ β, αβ and αβ are defined for all α by transfinite induction on β:

α+ 0 = 0,
α+ (β + 1) = (α+ β) + 1,
α+ λ = sup{α+ β : β < λ},

α · 0 = 0,
α(β + 1) = αβ + α,

αλ = sup{αβ : β < λ},

α0 = 1,

αβ+1 = αβ · α,

αλ = sup{αβ : β < λ}.

Theorem 4.9 (Zermelo) Every set X can be well-ordered: there exists an ordinal β such that X is
the set

{
xα : α < β

}
.

4.2 Cardinal numbers
Definition 4.10 (having the same cardinal) Two sets X and Y have the same cardinal, which we
write |X| = |Y |, if there exists a one-to-one map from X onto Y .

This defines an equivalence relation on the class of sets.

Definition 4.11 (having smaller cardinal) The set X has smaller cardinal than Y , which we write
|X| 6 |Y | if there exists an injective map from X to Y .

This defines a reflexive transitive relation on the class of sets.

Theorem 4.12 (the relation 6 is a partial order modulo the cardinal relation, Cantor-Bernstein)
If |X| 6 |Y | and |Y | 6 |X|, then |X| = |Y |.

Proof. We begin with the particular case when Y ⊂ X. Let f : X → Y an injective map. We define
inductively X0 = X, Xn+1 = f(Xn), and Y0 = Y , Yn+1 = f(Yn). Note that Y0 ⊂ X0 hence Yn ⊂ Xn

for all n. Note also f
(
Xn \ Yn

)
= Xn+1 \ Yn+1. Let g : X → Y be the function defined by

g(x) = f(x) if x ∈
⋃
n>0

Xn \ Yn, or g(x) = x otherwise.

If g(x) = g(y), then either only one of x and y (say x) belong to some Xn \ Yn, hence f(x) = y (then
f(x) ∈ Xn+1 \Yn+1, a contradiction), or both x and y belong to

⋃
Xn \Yn, hence f(x) = f(y), or none

of them belong to
⋃
Xn \ Yn. In every case, x = y, so g is injective. On the other hand, if y is in Y .

Either y ∈ f
(⋃

Xn \ Yn
)
, so y = f(x) for some x in

⋃
Xn \ Yn, hence y = g(x). Or y /∈ f

(⋃
Xn \ Yn

)
;

but y ∈ Y , hence does not belong to X \ Y , and does not belong to any Xn \ Yn. It follows that
y = g(y), so g is surjective.
General case. If f : X → Y and g : Y → X are injective, then g(Y ) ⊂ X and g ◦ f : X → g(Y ) is an
injective map, so we may apply the first case to find a bijection between g(Y ) and X. As X and g(Y )
are in bijection via g, this concludes the proof.

We write |X| < |Y | if and only if |X| 6 |Y | and |Y | 6= |X|.

Theorem 4.13 (the relation 6 is non-trivial, Cantor) For any set X, one has |X| < |P(X)|.

Proof. Let f be any function from X to P(X). Let us show that f is not onto. Let Y be the subset
Y =

{
x ∈ X : x /∈ f(x)

}
of X. If Y is in the range of f , there is an element a ∈ X with Y = f(a). If

a ∈ Y , then a /∈ f(a), a contradiction. If a /∈ Y , then a ∈ f(a), a contradiction also. It follows that f
is not onto, so that |X| 6= |P(X)|. On the other hand, the map x 7→ {x} is an injective map from X

to |P(X)| so |X| 6 |P(X)|.
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Definition 4.14 (cardinal number) An ordinal number α is called a cardinal if it is the least ordinal
β such that |α| = |β|, i.e. if α satisfies |β| 6= |α| for all β ∈ α.

We shall use κ, λ, µ, . . . to denote cardinal numbers. Finite ordinals are cardinals, and ω is the least
infinite cardinal.

Definition 4.15 (cardinal of a set) Every set X is in bijection with a unique cardinal number called
its cardinal, written |X|.

Proof. By Zermelo’s Theorem, there is an ordinal α that is in bijection with X. Among the ordinals
β ∈ α + 1 that satisfy this property, there is a least one for ∈, say λ. We claim that λ is an ordinal
number, for any β ∈ λ in bijection with λ would be in bijection with X, contradicting the minimality
of λ. If λ and µ are two cardinal numbers in bijection with X, they are in bijection, so λ /∈ µ and
µ /∈ λ by definition of a cardinal, hence µ = λ.

Remarks. 1. The notation can |X| = |Y | means either that X and Y are in bijection, or that X
and Y have the same cardinal number. These statement are equivalent.4.10.

2. If λ is a cardinal, then |λ| = λ. If λ and µ are cardinal numbers, the notation |λ| < |µ| means
either that λ ∈ µ, or that there is an injection from λ to µ, but no bijection. These statement
are equivalent.

Definition 4.16 (operation on cardinals) The arithmetic operations on cardinals are defined by:

κ+ λ = |A ∪B| where |A| = κ, |B| = λ, A,B disjoint,
κ · λ = |A×B| where |A| = κ, |B| = λ,

κλ = |AB| where |A| = κ, |B| = λ,

and are independent of the choice of the sets A and B.

Exercises 4.17 1. If |X| = κ, then |P(X)| = 2κ.
2. + and · are associative, commutative and · is distributive over +.
3. (κλ)µ = κµλ)µ.
4. κλ+µ = κλκµ.
5. (κλ)µ = κλµ.
6. If κ 6 λ, then κµ 6 λµ.
7. If 0 < λ 6 µ, then κµ 6 κµ.
8. κ0 = 1; 1κ = 1; 0κ = 0 if κ > 0.

Lemma 4.18 If A is a set of cardinals, then supA is also a cardinal.

Proof. supA is an ordinal according to the previous section. If β < supA is an ordinal, there exists a
cardinal λ ∈ A such that β ∈ λ, so |β| < |λ| by definition of a cardinal. It follows that |β| < supA.

Definition 4.19 (aleph numbers) By Cantor’s Theorem, for any cardinal λ, there exists a cardinal
κ > λ. The set of cardinal numbers µ such that λ < µ 6 κ is thus non-empty, and has a least element
(that does not depend on λ) that we write λ+ and call the successor cardinal of λ. Using Lemma 4.18,
we define an increasing enumeration ℵ of cardinals by putting

ℵ0 = ω, ℵα+1 = ℵ+
α , and ℵλ = sup

{
ℵβ : β < λ

}
for a limit ordinal λ.

ℵλ is called a limit cardinal.

Lemma 4.20 Every infinite cardinal number is of the form ℵα for some unique ordinal α.

Proof. Let λ be an infinite cardinal and consider the map i : λ −→ ℵλ that maps α to ℵα. Note that
α < β implies ℵα < ℵβ for any ordinals α and β (by transfinite induction on β). In particular, the
map i is well-defined, and injective, so that ℵλ+1 > λ. It follows that the class {α ordinal : λ < ℵα}
is non-empty and has a least element β that satisfies ℵβ > λ. As λ is infinite, β cannot be 0. Nor can
β be a limit ordinal, one has β = α+ 1 so that ℵα 6 λ < ℵα+1, hence λ = ℵα.



CHAPTER 5

MORE MODEL THEORY

5.1 Elementary substructures, elementary extensions
Two L-structures N and M are called elementarily equivalent, which we write N ≡M , if they have

the same L-theory. This defines an equivalence relation on the class of all L-structures. Recall that N
is an L-substructure ofM , written N ⊂L M , if N is a subset ofM containing all the interpretations of
constants and closed under the interpretations of functions, and LN is the restriction of LM to N . We
saw in the exercise sheets that if ϕ(x̄) is a quantifier-free L-formula, N ⊂L M are two L-structures,
and ā is a tuple in N , then one has

N |= ϕ(ā) ⇐⇒ M |= ϕ(ā).

Definition 5.1 (elementary substructure, elementary extension) Let N andM be L-structures. N is
an elementary substructure ofM , written N ≺M , if N is a substructure ofM and for every L-formula
ϕ(x̄) and tuple ā in N , one has

N |= ϕ(ā) ⇐⇒ M |= ϕ(ā).
One also says that M is an elementary extension of N .

Remarks. 1. This defines a reflexive, transitive, antisymmetric relation on the class of L-structures.
2. If M is an L-structure and A a subset of M , we write L∪A for the language obtained by adding

a constant symbol for every element of A and define the L∪A-structure MA to be (M,LM ∪A),
obtained fromM by interpreting any m in A by m. If N is an L-substructure ofM , then N is an
elementary substructure of M iff the L ∪N -structures NN and MN are elementarily equivalent.

3. If N ≺ K, M ≺ K and N ⊂L M , then N ≺M .
Recall that an L-embedding σ : N →M between two L-structuresM and N is a map that preserves

the language L.

Lemma 5.2 (characterisation of embeddings) Let M,N be two structures and σ : N →M a map.
1. σ is an embedding if and only if, for every quantifier-free formula ϕ(x̄) and tuple ā in N ,

N |= ϕ(ā) ⇐⇒ M |= ϕ
(
σ(ā)

)
.

2. If σ is an isomorphism, then, for every formula ϕ(x̄) and every tuple ā in N , one has

N |= ϕ(ā) ⇐⇒ M |= ϕ
(
σ(ā)

)
.

Proof. 1. Assume that the equivalence holds and let c be a constant symbol, f an n-ary function
symbol and r an n-ary relation symbol. Taking the atomic formula x = c and a = cN , one has
σ(cN ) = cM . Taking the atomic formula f(x1, . . . , xn) = xn+1 and b̄ = (b1, . . . , bn) and ā =

(
b̄, fN (b̄)

)
in N , one has fM

(
σ(b̄)

)
= σ

(
fN (b̄)

)
. Taking the atomic formula r(x1, . . . , xn) and any ā = (a1, . . . , an)

in N , one has ā ∈ rN if and only if σ(ā) ∈ rM . It follows that σ is an embedding. Conversely, if σ is
an embedding, then the equivalence holds for atomic formulas: this can be shown first for a formulas
of the form x = t(ȳ) inductively on the complexity of the term t, and then for a quantifier-free formula
ϕ by induction on c(ϕ).
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2. If σ is an isomorphism, we show the equivalence by induction on the complexity of formulas. It
holds for atomic formulas by 1. It holds for a formula ¬ψ or ϕ ∧ ψ by the induction hypothesis. If
ϕ(x̄) is the formula ∃yψ(y, x̄) (we assume without loss of generality that y does not occur in x̄), then
one has

N |= ϕ(ā) ⇐⇒ there exists b ∈ N with N |= ψ(b, ā) ⇐⇒ there exists b ∈ N with M |= ψ(σ(b), σ(ā)),

which is equivalent to M |= ϕ(σ(ā)).

Definition 5.3 (elementary embedding) Let M,N be two structures and σ : N →M a map. σ is an
elementary embedding if for every formula ϕ(x̄) and every tuple ā in N , one has

(2) N |= ϕ(ā) ⇐⇒ M |= ϕ
(
σ(ā)

)
.

Remark. An elementary embedding is an embedding.
Examples 5.4 1. An ismorphism is an elementary embedding.

2. If M is an L-structure and MU an ultrapower of M , the map M → MU that sends an element
x to the class (x, . . . , x, . . . )U is an elementary embedding by Łos’ Theorem.

Lemma 5.5 Let M,N be two structures and σ : N →M an embedding. σ is elementary if and only
if σ(N) is an elementary substructure of M .
Proof. As σ is an embedding, then N and σ(N) are isomorphic. By Lemma 5.2, for every formula
ϕ(x̄) and tuple ā in N , one has N |= ϕ(ā) ⇐⇒ σ(N) |= ϕ

(
σ(ā)

)
.

On the other hand, σ(N) ≺M is equivalent to σ(N) |= ϕ
(
σ(ā)

)
⇐⇒ M |= ϕ

(
σ(ā)

)
.

Lemma 5.6 (Tarski-Vaught test) Let M be a structure and N ⊂L M a substructure. If, for every
L-formula ϕ(x, ȳ) and tuple ā in N , whenever one has M |= ∃xϕ(x, ā), there exists b in N such that
M |= ϕ(b, ā), then N is an elementary substructure of M .
Proof. We show that the equivalence N |= ϕ(ā) ⇐⇒ M |= ϕ(ā) holds for every tuple ā in N by
induction on the complexity of formulas. As N is a substructure of M , the equivalence holds for
atomic formulas. If it holds for ϕ and ψ, it also holds for ¬ϕ and ϕ∧ψ. If ϕ is of the form ∃xψ(x, ȳ),
then

N |= ϕ(ā) ⇐⇒ there exists b in N with N |= ψ(b, ā)
⇐⇒ there exists b in N with M |= ψ(b, ā)
=⇒ there exists b in M with M |= ψ(b, ā)
⇐⇒ M |= ϕ(ā),

and the missing implication is precisely the hypothesis.

Theorem 5.7 (upward Löwenheim-Skolem’s Theorem) Let M be an infinite L-structure and κ a car-
dinal number. There is an elementary extension K of M such that |K| > κ.
Proof. Let Σ(M) be the L ∪M -theory of M (sometimes called the elementary diagram of M) and D
a set of new constant symbols of cardinality κ. Consider the L ∪M ∪D-theory

Σ = Σ(M) ∪ Γ where Γ =
{
c 6= d : c, d distinct elements of D

}
.

Any finite subset Σ0 ⊂ Σ is the union of a finite subset of Σ(M) and a finite subset of Γ involving
constants symbols belonging to a finite setD0 ⊂ D. Choosing finitely many distinct elements (mk)k∈D0

of M , one defines an L∪M ∪D-structure on M by considering (M,LM ∪M ∪ (mk)k∈D) where mk is
arbitrary chosen in M for k ∈ D \D0. It follows that (M,LM ∪M ∪ (mk)k∈D) is a model of Σ0. By
the Compactness Theorem, Σ has a model (K,LK ∪MK ∪DK). As K is given with interpretations of
the constant symbols, there is a map i : D −→ DK ⊂ K sending c to cK . As K satisfies Γ, the map i
is injective, so |K| > κ. As K satisfies Σ(M), one has, for every formula ϕ(x̄) and every tuple ā ∈M ,

M |= ϕ(ā) (in L) ⇐⇒ M |= ϕ((ā)) (in L∪M) ⇐⇒ K |= ϕ((ā)) (in L∪M) ⇐⇒ K |= ϕ(ā) (in L),

so the L-structure (K,LK) is an elementary extension of M .


