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ON PROPERTIES OF (WEAKLY) SMALL GROUPS

CÉDRIC MILLIET

Abstract. A group is small if it has only countably many complete n-types over the empty set for each

natural number n. More generally, a group G is weakly small if it has only countably many complete

1-types over every finite subset of G . We show here that in a weakly small group, subgroups which

are definable with parameters lying in a finitely generated algebraic closure satisfy the descending chain

conditions for their traces in any finitely generated algebraic closure. An infinite weakly small group has

an infinite abelian subgroup, which may not be definable. A small nilpotent group is the central product of

a definable divisible group with a definable one of bounded exponent. In a group with simple theory, any

set of pairwise commuting elements is contained in a definable finite-by-abelian subgroup. First corollary:

a weakly small group with simple theory has an infinite definable finite-by-abelian subgroup. Secondly, in

a group with simple theory, a solvable group A of derived length n is contained in an A-definable almost

solvable group of class at most 2n − 1.

A connected group of Morley rank 1 is abelian [21, Reineke]. Better, in an
omega-stable group, a definable connected groupofminimalMorley rank is abelian.
This implies that every infinite omega-stable group has a definable infinite abelian
subgroup [7, Cherlin]. Berline and Lascar generalised this result to superstable
groups in [5]. More recently, Poizat introduced d -minimal structures (englobing
minimal ones) and structures with finite Cantor rank (including both d -minimal and
finite Morley ranked structures). Poizat proved a d -minimal group to be abelian-
by-finite [18]. He went further showing that an infinite group of finite Cantor rank
has a definable abelian infinite subgroup [19]. More generally, we show in this paper
that an infinite weakly small group has an infinite abelian subgroup, which may not
be definable however.
We then turn to weakly small groups with a simple theory. Recall that an

ℵ0-categorical superstable group is abelian-by-finite [4, Baur, Cherlin and Mac-
intyre]. In [24], Wagner showed any small stable infinite group to have a definable
infinite abelian subgroup of the same cardinality. Later on, Evans and Wagner
proved that an ℵ0-categorical supersimple group is finite-by-abelian-by-finite and
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has finite SU -rank [8]. We shall show that an infinite group the theory of which is
small and simple has an infinite definable finite-by-abelian subgroup. However we
still do not known whether a stable group must have an infinite abelian subgroup
or not.

Definition 1. A theory is small if it is consistent with at most countably many
complete n-types without parameters for every natural number n. A structure is
small if its theory is so.

Note that smallness is preserved by interpretation, and by adding finitely many
parameters to the language. Small theories arise when one wishes to count the
number of pairwise non-isomorphic countable models of a complete first order
theory in a countable language. If such a theory has fewer than the maximal
number of pairwise non-isomorphic models, it is indeed small. Note that ℵ0-
categorical theories and omega-stable theories are small.

Definition 2 (Belegradek). A structure is weakly small if it has only countably
many 1-types over a for any finite tuple a coming from the structure.

Weakly small structures were introduced by Belegradek to give a common gener-
alisation of small and minimal structures. A weakly small ℵ0-saturated structure is
small.

Definition 3 (Poizat [18]). An infinite structure is d -minimal if any of its parti-
tions has no more than d infinite definable subsets.

Provided that its language be countable, a d -minimal structure is weakly small
as there are at most d non algebraic types over every finite parameter set, and
fewer algebraic types than the countably many formulae. Note that weak smallness
neither is a property of the theory, nor allows the use of compactness, nor guarantees
that the set of 2-types be countable. It allows arguments using formulae in one free
variable only. Those formulae, the parameters of which lie in a fixed finite set, are
ranked by the Cantor rank and degree.

Examples. A non weakly small group. Let G be the sum over all prime numbers
p of cyclic groups of order p. For every set of prime numbers P, the type saying
that ”x is p-divisible if and only if p is in P” is finitely consistent. This produces as
many complete types as there are sets of primes, preventing G from being weakly
small.
A non minimal, d -minimal group. Recall that a minimal group is abelian [21,
Reineke], and a d -minimal group is abelian-by-finite [18, Poizat]. Let M be a
minimal group, and F a finite group of order d . Any semi-direct productM ⋊ F
with a predicate interpretingM will do.
A non d -minimal, non small, weakly small group. Let p be a prime, and G the
sum over all natural numbers n of the cyclic groups of order pn. The theory of G is
the theory of aZ-module, and eliminates quantifiers up to positive-prime formulae.
So every definable subset of G is a boolean combination of cosets of subgroups of
the form pnG , or pnx = 0. This allows only countably many 1-types over every
finite subset, thus G is weakly small. On the other hand, let T (x) be the following
binary tree
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}, . . . is an increasing sequence of

proper subsets of G , the partial type {x : xp
n

/∈ Gp
n+1

, n ≥ 1} is consistent. Let a
be a realisation of it in a saturated extension of G . The tree T (a) has 2ℵ0 pairwise
inconsistent branches, producing as many 1-types over a, so G is not small.

§1. The Cantor rank. Given a structureM , a setA of parameters lying insideM ,
and an A-definable subset X ofM , we define the Cantor rank of X over A by the
following induction:

CBA(X ) ≥ 0 if X is not empty,
CBA(X ) ≥ α+1 if there are infinitely many disjoint A-definable subsets of X
having Cantor rank over A at least α.
CBA(X ) ≥ ë for a limit ordinal ë, if CBA(X ) is at least α for every α less
than ë.

If the structure is weakly small and if A is a finite set, this transfinite process
eventually stops, and X has an ordinal Cantor rank over A.
The Cantor rank CBA(p) of a complete 1-type p inM over A is the least Cantor
rank of the A-definable sets implied by p. It is also the derivation rank of p in the
topological space S1(A) (sometimes plus 1, depending on the definition taken for
the Cantor-Bendixson rank).
The Cantor degree of X over A is the greatest natural number d such that there is
a partition of X into d A-definable sets having maximal Cantor rank over A. We
shall write dCBA(X ) for this degree. It is also the number of complete 1-types in X
over A having maximal Cantor rank over A.
For a natural number n, we say that a map is n-to-one if it is surjective and if
the cardinality of its fibres is bounded by n. Definable n-to-one maps preserve the
Cantor rank, and the degree variations can be bounded by the maximal size of the
finite fibres:

Lemma 1.1. Let X and Y be A-definable sets, and f an A-definable map from X
to Y . Then

1. If f is onto, CBA(X ) ≥ CBA(Y ).
2. If f has bounded fibres, CBA(Y ) ≥ CBA(X ).
3. If f is n-to-one, then X and Y have the same Cantor rank over A, and

dCBA(Y ) ≤ dCBA(X ) ≤ n · dCBA(Y ).

Remark 1.2. The first two points appear for one-to-one maps together with the
introduction of Morley’s rank [13, Theorem 2.3]. Poizat extends them for n-to-one
maps in the context of groups with finite Cantor rank [19, Lemme 1] (independently
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to the author’s work). To the author’s knowledge, the result concerning the degree
is new.

Proof. We may add A to the language. For point one, we show inductively that
CB(X ) is at least CB(Y ). If CB(Y ) ≥ α + 1, there are infinitely many disjoint
definable sets Y0, Y1, . . . in Y of rank at least α. Their pre-images are disjoint and
have rank at least α by induction, so CB(X ) ≥ α + 1.
For point two, we show inductively that CB(Y ) is at least CB(X ). Suppose
CB(X ) ≥ α+1. InX , there are infinitely many disjoint definable subsetsX0, X1, . . .
of rank at least α. As the fibres of f have cardinality at most n say, for every subset
I of N of cardinality n + 1, the intersection

⋂

i∈I f(Xi) is empty. Thus there is a
subset J of N of maximal finite cardinal with 0 in J such that

⋂

i∈J f(Xi) has the
same rank as f(X0). Put Y0 =

⋂

i∈J f(Xi). Iterating this process, one builds a
sequence Y0, Y1, . . . of definable subsets of Y such that the sets Yi and f(Xi) have
the same Cantor rank and CB(Yi ∩ Yj) < CB(Yi) for all natural numbers i 6= j.
Inductively, one may cut off a small ranked subset from every Yi and assume that
they are pairwise disjoint. By induction hypothesis, the rank of every Yi is at least
α, so CB(Y ) ≥ α + 1.
For the third point, if Y has degree d , then there is a partition of Y in definable
sets Y1, . . . , Yd with maximal rank. The pre-images of the sets Yi have maximal
rank according to the first two points and form a partition of X , so the degree
dCB(X ) is at least dCB(Y ).
For the converse inequality, let Y have degree d , and let Y1 be a subset of Y of
degree 1. It is enough to show that f−1(Y1) has degree at most n. Suppose there
are n + 1 disjoint definable subsets X0, . . . , Xn of f−1(Y1) with maximal rank. As
the fibres of f have no more that n elements, the intersection

⋂n
i=0 f(Xi) is empty,

so there is a proper minimal subset I of {0, . . . , n} such that
⋂

i∈I f(Xi) has the
same rank as Y . Thus, the intersection of

⋂

i∈I f(Xi) and f(Xi) has small rank
for every i out of I , and dCB(Y1) is at least two, a contradiction. ⊣

Remark 1.3. In Lemma 1.1.3, to deduce that X and Y have the same Cantor
rank, the fibres of f must be bounded, and not only finite. Consider for instance
Y to be the set of all natural numbers N together with the ordering, and X to be
the set of pairs of natural numbers (x, y) so that y ≤ x. When projecting on the
second coordinate, every fibre is infinite, so CBN(X ) = 2 ; when projecting on the
first coordinate, the fibres are finite, but still CBN(Y ) = 1.

Note that in the proof of Lemma 1.1, one can weaken the definability assumption
on f, and simply assume that the image and pre-image by f of any definable set
are definable. For instance, we easily get:

Lemma 1.4. LetM be a model, X anA-definable subset ofM , and ó any automor-
phism of the structureM . Then

CBA(X ) = CBó(A)(ó(X )).

Definition 1.5. LetM be a structure, andX an acl(∅)-definable set inM . Let C
be a monster model extendingM . We consider the finite union of the conjugates of
X (C) under the action ofAut(C). We writeX for its intersection withM . Similarly,
we define X̊ to be the intersection ofM with the finite intersection of the conjugates
of X (C) under the action of Aut(C).
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Note that neither X nor X̊ depend on the choice of the monster model. X is a
∅-definable set containing X , whereas X̊ is a ∅-definable subset of X . If X is the
singleton {a}, we prefer to write a rather than {a}.
If A is a subset of B andX anA-definable set, then CBA(X ) is less than or equal
toCBB(X ). Note that the Cantor rank (respectively degree) ofX overA or over the
definable closure of A are the same. The Cantor rank over A also does not change
when adding finitely many algebraic parameters to A, and the degree variation can
be bounded:

Lemma 1.6. Let X be a set definable without parameters, and let a be an algebraic
element of degree n over the empty set. Then

1. CBa(X ) = CB∅(X ).
2. dCB∅(X ) ≤ dCBa(X ) ≤ n! · dCB∅(X ).

Proof. We assume in the proof that the language is countable. However, this
assumption is not necessary (see Remark 1.9). For the first point, the Cantor rank
of a set increases when one allows new calculation parameters, soCBa(X ) is at least
CB∅(X ). Conversely, let us show that CB∅(X ) is at least CBa(X ). Suppose first
thatCBa(X ) =∞ holds. Then there must be 2ℵ0 types over a in X . The restriction
map from S(X, a) to S(X, ∅) is n!-to-one. Indeed, if x and y have the same type
over ∅, there is a monster model C and an automorphism ó of C with y = ó(x). If
q(x, a) is the type of x over a, then q(y, ó(a)) is the type of y over a. This shows
that there are 2ℵ0 types over ∅ as well, which yields CB∅(X ) = ∞. So, we may
assume that CBa(X ) is an ordinal. Let us suppose that CBa(X ) = α + 1 and that
the result is proved for every ∅-definable set of CBa -rank α. There are infinitely
many disjoint a-definable subsets Xi of X , each of one having rank α over a. By
Lemma 1.4 and induction hypothesis, for every i , the set X1 and a conjugate of Xi
have the same rank (computed over the set ā of all conjugates of a). So a conjugate
of X1 intersects only finitely manyXi in a set of maximal rank over ā. One can take
off these Xi , cut off a small ranked subset from the remaining Xi and assume that
the conjugates of X1 do not intersect any Xi . Iterating, one may assume that no
conjugate of Xi intersects Xj when i differs from j. By Lemma 1.4 and induction
hypothesis,

CBa(Xi) = CBā(Xi) = CBā(Xi) = CB∅(Xi) = α.

As the sets Xi are disjoint, CB∅(X ) ≥ α + 1, so the first point is proved.
For the second point, we may assume that X has degree 1 over the empty set.
Suppose that X has degree at least n! + 1 over a. Let X1 be an a-definable subset
of X with maximal rank over a and degree 1. The union X1 of its conjugates has
degree at most n! over a, so X1 and its complement in X both have maximal rank
over a, hence over the empty set, a contradiction. ⊣

Definition 1.7. We shall call local Cantor rank of X over acl(a) its Cantor rank
over any parameter b defining X and having the same algebraic closure as a.

Remark 1.8. In Lemma 1.6, if b is another algebraic parameter, one may have
dCBa,b(X ) > dCBa(X ), so one need not have CB∅(X ) = CBacl(∅)(X ). In fact,
CBacl(∅)(X ) may not even be an ordinal. For instance, consider the unit circle

S1 = {x ∈ C : |x| = 1} with a ternary relation C (a, b, c) saying that b lies on the
shortest path joining a to c. We add algebraic unary predicates A1, A2, . . . to the
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language, withAn = {x ∈ S1 : x2
n

= 1} for every natural number n. This structure
has CB∅-rank 0, but infinite CBacl(∅)-rank.

Remark 1.9. Lemmas 1.1, 1.4 and 1.6 are particular cases of a more general
topological result. Let X be any Hausdorff topological space, X ′ his first Cantor
derivative, and inductively on ordinals, let X α+1 stand for (X α)′. The Cantor-
Bendixson rank of X is the least ordinal â such that X â is empty and ∞ if there
is no such â . Let us call a rough partition of X , any covering of X by open sets
having maximal Cantor-Bendixson rank and small ranked pairwise intersections.
The Cantor-Bendixson degree of X is the supremum cardinal dCB(X ) of the rough
partitions of X . Without compactness one could have dCB(X ) ≥ ù. If X was a
compact space, one could equivalently define CB(X ) (which differs by 1 from the
previous definition) by the following induction:

CB(X ) ≥ 0 if X is not empty.
CB(X ) ≥ α+1 if there are infinitely many open subsetsO1, O2, . . . ofX with
CB(Oi) ≥ α and CB(Oi ∩Oj) < α for all i 6= j.
CB(X ) ≥ ë for a limit ordinal ë, if CB(X ) ≥ α for every α < ë.

As an analogue of Lemma 1.1, replacing a “definable” set by an “open” set, and
a “definable” map, by either a “continuous” map or an “open” one, we easily get:

Lemma 1.10. Let X andY be two Hausdorff topological spaces and let f be a map
from X onto Y .

1. If f is open and onto, then CB(X ) ≥ CB(Y ).
2. If f is continuous and has finite fibres, then CB(Y ) ≥ CB(X ).
3. If f is a continuous, open, n-to-one, then CB(X ) = CB(Y ) and

dCB(Y ) ≤ dCB(X ) ≤ n · dCB(Y ).

To deduce Lemma 1.1 from Lemma 1.10, we only need to pass from the cat-
egory of definable sets to the category of topological spaces, and notice that an
A-definable map f from X to Y induces a continuous open map f̃ from the (com-
pact) Hausdorff space of types S(X,A) to S(Y,A). Note that in Lemma 1.10.2, the
map need only have finite fibres to get preservation of the rank, whereas it needs to
have bounded fibres in Lemma 1.1.2. Note also thatf must have bounded fibres to
ensure that f̃ have finite ones. For Lemma 1.6, consider any continuous equivalence
relationR on aHausdorff topological spaceX , that is to say a relation such that the
canonical map X → X/R is open. If every equivalence class of R has size at most
some natural number n, as X/R is Hausdorff and as the map X → X/R is also
continuous by definition, it follows from Lemma 1.10 that CB(X ) = CB(X/R)
and the inequalities dCB(X ) ≤ dCB(X/R) ≤ n · dCB(X ) hold. Let M be any
first order structure, a an algebraic parameter of degree n, and C a monster model
extendingM . Applied to the space of types over a, modulo the equivalence relation
“to be conjugated under the action of Aut(C)”, the latter yields Lemma 1.6.

§2. General facts about weakly small groups. As an immediate corollary of
Lemma 1.1 we obtain a result of Wagner:

Corollary 2.1 (Wagner [24]). Iff is a definable group homomorphismof aweakly
small group G , the kernel of which has at most n elements, then f(G) has index at
most n in G .
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Proof. Otherwise, one can find a finite tuple a over which at least n + 1 cosets
of f(G) are definable, so G has degree over a at least (n + 1) · dCBa(f(G)),
a contradiction with Lemma 1.1.3. ⊣

Corollary 2.2. In a weakly small group, there are at most n conjugacy classes of
elements the centraliser of which has order at most n.

Proof. Otherwise, let us pick n + 1 conjugacy classes C1, . . . , Cn+1 of elements
the centraliser of which has order at most n, and choose a finite tuple a over which
these classes are definable. According to Lemma 1.1, each class Ci has maximal
Cantor rank over a and degree at least dCBa(G)/n, a contradiction. ⊣

For any set X definable in an omega-stable group, one can define the stabiliser
of X up to some small Morley ranked set. In a weakly small group, we can define
a local stabiliser up to some set of small local Cantor rank, where local means “in
a finitely generated algebraic closure”. We write A∆B for the symmetric difference
of two sets A and B.

Definition 2.3. Let X be a set definable without parameters in a weakly small
group G , and let Γ stand for the algebraic closure of a finite tuple g in G . One
defines the local almost stabiliser of X in Γ to be

StabΓ(X ) = {x ∈ Γ : CBx,g(xX ∆X ) < CBg(X )}.

For any subgroup ä of Γ, we shall write Stabä(X ) for StabΓ(X ) ∩ ä.

Corollary 2.4. StabΓ(X ) is a subgroup of Γ. If X is invariant by conjugation
under elements of Γ, then StabΓ(X ) is normal in Γ.

Proof. Let a and b be in StabΓ(X ). The sets X , aX and bX have the same
types of maximal rank computed over g, a, b, so CBg,a,b(aX ∆ bX ) is smaller than
CBg(X ). As the rank is preserved under definable bijections, and when adding
algebraic parameters, we have

CBg,a,b(aX ∆ bX ) = CBg,a,b(b
−1aX ∆X ) = CBg,b−1a(b

−1aX ∆X )

so b−1a belongs to StabΓ(X ). ⊣

Recall that for a definable generic subset X of an omega-stable group G , the
stabiliser of X has finite index in G . For a weakly small group, we have a local
version of this fact:

Proposition 2.5. Let G be a weakly small group, g a finite tuple of G , and X a
g-definable subset of G . If ä is a subgroup of dcl(g) and if X has maximal Cantor
rank over g, then Stabä(X ) has finite index in ä.

Proof. Let m and l be the degree over g of G and X respectively. In G , there
are m types of maximal rank over g which we call its generic types over g. Thus,
for translates of X by elements of ä, there are at most C lm choices for their generic
types. If one chooses C lm + 1 cosets of X , at least two of them will have the same
generic types. ⊣

Weakly small groups definable over a finitely generated algebraic closure satisfy
a local descending chain condition:
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Lemma 2.6. Let G be a weakly small group, and H2 ≤ H1 two subgroups of G
definable without parameters.

1. If H2 ∩ acl(∅) is properly contained in H1 ∩ acl(∅), then either CB(H2) <
CB(H1), or dCB(H2) < dCB(H1).

2. If H1 and H2 have the same Cantor rank, then H2 ∩ acl(∅) has finite index in
H1 ∩ acl(∅).

Proof. If b is an element of acl(∅) in H1 \H2, the set bH2 is definable without
parameters, and is disjoint fromH2. This proves the first point. IfH1 andH2 have
the same Cantor rank, one has

CB(H2) = CBb(H2) = CBb(bH2) = CBb(bH2) = CB(bH2).

It follows that CB(bH2) is maximal in H1, so there must be only finitely many
choices for bH2, and thus for bH2. ⊣

Theorem 2.7. In a weakly small group, the trace over acl(∅) of a descending chain
of acl(∅)-definable subgroups becomes stationary after finitely many steps.

Proof. Let G1 ≥ G2 ≥ · · · be a descending chain of acl(∅)-definable subgroups.
According to Lemma 1.6.1, the local Cantor rank becomes constant after some
index n. Then Gi ∩ acl(∅) has finite index in Gn ∩ acl(∅) for every i ≥ n after
Lemma 2.6.2. Let a be some algebraic tuple such that Gn is a-definable. By
Lemma 1.6.1, we may add the parameter a in the language and assume without
loss of generality that Gn is ∅-definable. The intersection of the G̊i ∩ acl(∅) when
i ≥ n is the intersection of finitely many of them by Lemma 2.6.1: it is a subgroup
of Gn ∩ acl(∅) of finite index, contained in Gi for every i ≥ n. The sequence of
indexes [Gn ∩ acl(∅) : Gi ∩ acl(∅)] is thus bounded, and bounds the length of the
chain G1 ∩ acl(∅) ≥ G2 ∩ acl(∅) ≥ · · · . ⊣

Remark 2.8. We shall call this result the weakly small chain condition. Note that
Theorem 2.7 is trivial for an ℵ0-categorical group, and also if one replaces the
algebraic closure by the definable closure.

§3. A property of weakly small groups.

Proposition 3.1. An infinite group whose centre has infinite index, and with only

one non-central conjugacy class, is not weakly small.

Remark 3.2. This is the analogue of the stable case [17, Théorème 3.10] stating
that an infinite group with only one non-trivial conjugacy class is unstable, which itself
comes from the minimal case [21, Reineke].

Proof. Note that the group has no second centre. Moding out the centre, wemay
suppose that the centre is trivial. If there is a non-trivial involution, every element is
an involution and the group is abelian, a contradiction. Any non-trivial element g is
conjugated to g−1 by some element, say h. So h is non-trivial and conjugated to h2,
which equals hk for some k. Write ä for the definable closure of h and k. Since g is
in C (hk) and gh 6= hg, the element h belongs to (C (C (h)) ∩ ä) \ (C (C (hk)) ∩ ä).
It follows that the chain

C (C (h)) ∩ ä > C (C (hk)) ∩ ä > C (C (hk
2

)) ∩ ä > · · ·

is infinite, contradicting the weakly small chain condition 2.7. ⊣
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Let G be any group. We say that a subgroupH of G is proper if it is not G .

Proposition 3.3. An infinite non-abelian weakly small group has proper centralis-

ers of cardinality greater than n for each natural number n.

Proof. For a contradiction, let G be a weakly small counter example with all
proper centralisers finite of bounded size n. Note thatG has finite exponent, and a
finite centre.

(1) The groupG has finitely many conjugacy classes.

As the centralisers have bounded size, we apply Corollary 2.2. We may also add
a member ai of each class to the language and assume that every conjugacy class is
∅-definable.

(2)We may assume every proper normal subgroup of G to be central.

We claim that a normal subgroupmust be central or have finite index inG : a nor-
mal subgroup is the union of conjugacy classes, hence is ∅-definable. By Lemma 1.1,
the conjugacy class of a non central element, aG1 say, must have maximal Cantor
rank over ∅. It follows from Lemma 1.1.3 that any proper infinite normal subgroup
has index at most n. One may replaceG by a minimal unionC of conjugacy classes
(with at least one of them non-central) closed under multiplication: as the group
C has finite index in G , every possible non-central proper normal subgroup H in
C has finite index in G , and would give birth to a subgroup N of H , normal in G ,
and of finite index in G , contradicting the minimality of C .

(3)We may assume that the centre of G is trivial.

Should G/Z(G) be abelian, G/Z(G) would be be finite, as G has only finitely
many conjugacy classes. This is not possible as G is infinite. It follows that the
second centre Z2(G) of G is a proper normal subgroup in G . By (2), one has
Z2(G) = Z(G). Moding out by the centre (which preserves weak smallness as well
as the assumption that the centralisers have bounded size), we may assume that the
centre of G is trivial.

(4) The groupG is not locally finite.

Assume that G be locally finite. Since it has finite exponent, there is a prime
number p such that for every natural number n, there is a finite subgroup H
of G whose cardinality is divisible by pn. Then H has Sylow subgroup S of
cardinality at least pn. But S has a non-trivial centre, the centraliser of any element
of which contains the whole Sylow, a contradiction. Thus, one can consider a
finitely generated infinite algebraic closure Γ.

(5) The group Γ has finitely many conjugacy classes.

Any x in Γ can be written ayi . As C (ai) is finite, y is algebraic over ai and x.

(6) One may assume the proper normal subgroups of Γ to be trivial.

By (2) and (3), no proper unionof conjugacy classesC1, . . . , Cm (in the sense ofG)
is closed under multiplication. We may add finitely many parameters witnessing
this fact to the language.

(7) For every conjugacy class aG , the group StabΓ(aG ) equals Γ.

The local stabiliser of aG in Γ is a normal subgroup of Γ by Corollary 2.4. It
must be non-trivial according to Proposition 2.5, hence equals Γ by (6).
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(8) G has only one non-central conjugacy class.

We use an argument of Poizat in [18], which we shall call Poizat’s symmetry
argument. Leta = ai and b = aj be representatives of any twonon-trivial conjugacy
classes (in particular, a, b are in Γ). For every conjugate xbx−1 of b except a set
of small Cantor rank over a and b, the elements axbx−1 and b are conjugates.
As a surjection with bounded fibres preserves the rank, for all x except a set of
small rank, axbx−1 and b are conjugates. Symmetrically, for all x except a set of
small rank, x−1axb and a are conjugates: one can find some x such that axbx−1

and x−1axb are conjugated respectively to b and a. Thus, b and a lie in the same
conjugacy class.

(9) Final contradiction.

G is an infinite group with bounded exponent and only one non-trivial conjugacy
class. Such a group does not exist [21, 18, Reineke]. For instance, as a group of
exponent 2 is abelian, the group should have exponent a prime p 6= 2. If x 6= 1, the
elements x and x−1 would be conjugated under some element y of order 2 modulo
the centraliser of x, which prevents the group from having exponent p. ⊣

Theorem 3.4. A small infinite ℵ0-saturated group has an infinite abelian subgroup.

Proof. By Proposition 3.3 and saturation, such a group is either abelian, or
has an infinite proper centraliser. Iterating, one either ends on an infinite abelian
centraliser after finitely many steps or builds an infinite chain of pairwise commuting
elements. These elements generate an infinite abelian subgroup. ⊣

Appealing to Hall-Kulatilaka-Kargapolov, who use Feit-Thomson’s Theorem,
one can say much more, and manage without the Compactness Theorem. Recall

Fact 3.5 (Hall-Kulatilaka-Kargapolov [11]). An infinite locally finite group has
an infinite abelian subgroup.

Theorem 3.6. A weakly small infinite group has an infinite abelian subgroup.

Proof. We just need to show that anyweakly small infinite group is either abelian
or has an infinite proper centraliser: if this is the case, iterating, one either gets
an infinite abelian centraliser or builds an infinite chain of pairwise commuting
elements.
So let G be a non abelian counter-example. Every non central element of G has
finite centraliser, and G has a finite centre. The group G cannot have an infinite
abelian subgroup. According toHall-Kulatilaka-Kargapolov,G is not locally finite.
By Lemma 1.1.3, an infinite finitely generated subgroup ã splits into finitely many
conjugacy classes (in the sense of G). By Lemma 1.1, all non-central such classes
havemaximal Cantor rank over ã. By Proposition 2.5, the almost stabiliser of every
non-central conjugacy class is a normal subgroup of finite index in ã. After Poizat’s
symmetry argument, the intersection of almost stabilisers of all conjugacy classes
meeting ã consists of a (finite) central subgroup Zã together with Cã ∩ ã, where
Cã is a conjugacy class in G . It is easy to see that Cã is the same for all finitely
generated infinite subgroups ã, so we can denote this unique conjugacy class by C .
We conclude that C · Z(G) ∪ {1} is a definable subgroup of G . Replacing G by
the later, we are back to the case where all proper centralisers have bounded size, a
contradiction with Proposition 3.3. ⊣
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Remark 3.7. The initial proof of Theorem 3.4 used Hall-Kulatilaka-Kargapolov.
The author is grateful to Poizat who adapted the proof to a weakly small group and
made clarifying remarks.

Remark 3.8. One cannot expect the infinite abelian group to be definable, as
Plotkin found infinite ℵ0-categorical groups without infinite definable abelian sub-
groups [16].

§4. Small nilpotent groups. We now switch to small nilpotent groups. Let us first
recall that the structure of small abelian pure groups is already known:

Fact 4.1 (Wagner [25]). A small abelian group is the direct sum of a definable
divisible group with one of bounded exponent.

Remark 4.2. The group of bounded exponent need not be definable, but it is
contained in a definable group of bounded exponent.

Remark 4.3. Since Prüfer and Baer, one knows that a divisible abelian group is
isomorphic to direct sums of copies of Q and Prüfer groups, whereas an abelian
group of bounded exponent is isomorphic to a direct sum of cyclic groups [10].
It follows that the theory of a small pure group has countably many denumerable
pairwise non-isomorphic models ; thus, Vaught’s conjecture holds for the theory
of a pure abelian group. More generally, Vaught’s conjecture holds for every com-
plete first order theory of module over a countable Dedekind ring (and thus for
a module over Z), as well as for several classes of modules over countable rings
[20, Puninskaya].

Remark 4.4. Fact 4.1 does not hold for a weakly small abelian group: consider
the sum over n of cyclic groups of order pn . But one may say:

Proposition 4.5. In a weakly small abelian group, for every natural number n, any
element is the sum of an n-divisible element with one of finite order.

Proof. For a contradiction, let us suppose that there be an element x and a
natural number n such that xz /∈ Gn for any z having finite order. If there is some

y in G and some natural number k such that xkn = ykn
2

, this yields x = yn(y−nx)
with (y−nx)kn = 1, a contradiction. Then, for every natural number k, one has

xkn ∈ Gkn \ Gkn
2

. This implies that the chain G ∩ acl(x) > Gn ∩ acl(x) >

Gn
2

∩acl(x) > Gn
3

∩acl(x) > · · · is strictly decreasing and contradicts the weakly
small chain condition. ⊣

In an abelian group, every divisible group is a direct summand [3, Theorem 1].
This may not be true for a central divisible subgroup of an arbitrary group, even
if the ambient group is nilpotent. For instance, consider the subgroup of GL3(C)
the elements of which are upper triangular matrices with 1 entries on the main
diagonal ; it is a nilpotent group whose centre Z is divisible, isomorphic to C×, but
Z is no direct summand. However, we claim the following:

Proposition 4.6. LetG be a group, andD a divisible subgroup of the centre. There
exists a subset A of G , invariant under conjugation and containing every power of its
elements, with in addition

G = D · A and D ∩ A = {1}.
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Proof. IfA1 ⊂ A2 ⊂ · · · is an increasing chain of subsets each of which contains
all its powers and such that Ai ∩D is trivial, then

⋃

Ai still contains all its powers
and

⋃

Ai ∩ D is trivial too. By Zorn’s Lemma there is a maximal subset A with
these properties. We show that D ·A equals G . Otherwise, there exists an x not in
D ·A. By maximality of A, there is a natural number n greater than 1, and some d
in D so that xn equals d . We may choose n minimal with this property. Let e be
an nth root of d−1 in D, and let y equal xe. Then yn equals one, and y is not in
D · A. But the set of powers of y intersects D by maximality of A: there is some
natural number m < n such that ym lie in D, and so does xm, a contradiction with
the choice of n. ⊣

In [14, Nesin], it is shown that an omega-stable nilpotent group is the central
product of a definable group with one of bounded exponent. We show that this also
holds for a small nilpotent group. Recall that a groupG is the central product of two
of its normal subgroups, if it is the product of these subgroups and if moreover their
intersection lies in the centre of G . For a group G and a subset A of G , we shall
write An for the set of the nth-powers of A, and G ′ for the derived subgroup of G .
The following algebraic facts about nilpotent groups can be found in [6, Chapter 1].

Fact 4.7. In a nilpotent group, any divisible subgroup commutes with elements of

finite order.

Fact 4.8. Let G be a nilpotent group of nilpotent class c. If G/G ′ has exponent n,
the exponent of G is a natural number dividing nc .

Proposition 4.9. Let G be a nilpotent small group, and D a divisible subgroup
containingGn for some non-zero natural number n. Then G equals the productD · F
where the group F has bounded exponent.

Proof. Note that sinceD is divisible andGn ⊂ D, we getGn = D. By induction
on the nilpotency class ofG . IfG is abelian, Baer’s Theorem [3] concludes. Suppose
that the result holds for any small nilpotent groupof class c,and thatG is nilpotent of
class c+1, and letZ(G) be the centre ofG . The groupG/Z(G) is nilpotent of class c.
The quotient (D · Z(G))/Z(G) is a divisible subgroup and contains

(

G/Z(G)
)n
.

By induction hypothesis,G/Z(G) equals the product
(

D ·Z(G)/Z(G)
)

·
(

C/Z(G)
)

with C/Z(G) of finite exponent, say m. On the other hand, the centre is the sum
of a divisible subgroup D0 with a subgroup F0 of finite exponent, say l . So C lm

is included in D0. By Proposition 4.6, there is some set A closed under power
operation, such that C = D0 ·A andD0 ∩A = {1} ; but Alm is included in D0 ∩A,
so A has finite exponent, and

G = D · Z(G) ·D0 · A = (D ·D0) · (F0 ·A).

Note that since we have D0 ⊂ Gn = D, we get G = D · B where B is a set having
finite exponent. Let F be the group generated by B. The abelian group F/F ′ is
generated by (B · F ′)/F ′ and has bounded exponent. Fact 4.8 implies that F has
bounded exponent. ⊣

Theorem 4.10. A small nilpotent group is the central product of a definable divisible

group with a definable one of bounded exponent.

Proof. IfG is a small abelian group, it is the direct product of a divisible definable
group D and of one group F of finite exponent n by Fact 4.1. So it is the product
of D and the definable group of every elements of order n. By induction on the
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nilpotency class, if G is nilpotent of class c + 1, then G/Z(G) is the central sum
of some divisible definable normal subgroup A/Z(G) and some group B/Z(G) of
finite exponent n. Besides, Z(G) equals D0 ⊕ F0 where F0 has exponent m and D0
is definable and divisible. We write D for A2m ·D0.

Claim. D is a definable divisible normal subgroup of G .

Proof of Claim. Let x be an element inA and q a natural number. AsA/Z(G)
is divisible there is some y inA with x−1yq inZ(G). Then x−2m(y2m)q is inD0. As
D0 is central and divisible, this proves that A2m ·D0 is a divisible part. Let us show
that it is a group. Let a, b be in A. As A/Z(G) is normal in G/Z(G), there exists a
central element z such that ab = baz. Moreover, we have z = d0f0 for some d0 in
D0 and fm0 = 1. We obtain

a2mb2m = (ab)2mz(2m−1)+(2m−2)+···+1 = (ab)2mzm(2m−1) = (ab)2mdm(2m−1)0 .

A is a subgroup of G so ab is in A, and a2mb2m belongs to A2m · D0. A similar
argument shows thatD is normal in G . ⊣

By Fact 4.7, the set G2mn is included in D, so we may apply Proposition 4.9: there
is a group B of bounded exponent p such thatG = D ·B. We may assume B to be
definable and normal by replacing it with the set {x ∈ G : xp = 1} (the fact that
{x ∈ G : xp = 1} is a normal subgroup of G follows from Fact 4.7). ⊣

§5. Groups definable in a small and simple theory. We shall not define what a
simple structure is, but refer the interested reader to [26, Wagner]. We just recall
the uniform descending chain condition up to finite index in a group with simple
theory.

Definition 5.1. Two subgroups of a given group are commensurable if the index
of their intersection is finite in both of them.

Fact 5.2. (Wagner [26, Theorem4.2.12]) In a groupwith simple theory, letf(x, y)
be a fixed formula and let H1,H2, . . . be a family of subgroups defined respectively
by formulae f(x, a1), f(x, a2), . . . . If G1, G2, . . . is a descending chain of finite
intersections of Hi , there exists a natural number n such that the groups Gm and Gn
are commensurable for all m ≥ n.

Fact 5.3. (Schlichting [22, 26]) Let G be a group and H a family of uniformly
commensurable subgroups. There exists a subgroup N of G commensurable with
members of H and invariant under the action of the automorphisms group of G stabil-
ising the family H setwise. The inclusions

⋂

H∈H
⊂ N ⊂ H4 hold. Moreover, N is a

finite extension of a finite intersection of elements in H. In particular, if H consists of

definable groups then N is also definable.

We go on by recalling a few remarks on finite-by-abelian-by-finite groups. For a
group G and any subgroupH of G , let us writeHG for

⋂

g∈G H
g .

Definition 5.4. A group G is finite-by-abelian if G/H is abelian for some finite
normal subgroupH ofG . It is finite-by-abelian-by-finite if it has a normal subgroup
of finite index which is finite-by-abelian.
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Lemma 5.5. Let G be any group andH a subgroup of G .

1. If G is finite-by-abelian then so is H .
2. If G is finite-by-abelian-by-finite then so is H .
3. If G/H is finite andH finite-by-abelian then G is finite-by-abelian-by-finite.

Proof. If G/N is abelian for some finite normal subgroup N , then H/N ∩H is
isomorphic toNH/N hence abelian also. For point 2, ifG/N is finite-by-abelian for
some normal subgroup N of finite index, then NH/N is finite-by-abelian by point
1 and so is H/N ∩H . For point 3, HG is a normal subgroup of finite index in G .
Being a subgroup ofH , it is also finite-by-abelian by point 1. ⊣

We now turn to small simple groups. The first step towards the existence of a
definable finite-by-abelian infinite subgroup is to appeal to Theorem 3.4. Note that
in a stable group, every set of pairwise commuting elements is trivially contained
in a definable abelian subgroup. Shelah showed that in a dependent group, the
existence of an infinite set of pairwise commuting elements gives rise to a definable
infinite abelian subgroup [23]. Aldama strengthened Shelah’s result by providing a
definable group that contains the given subset [2]. The second step is the following:

Proposition 5.6. In a group with simple theory, every abelian subgroup A is con-
tained in an A-definable finite-by-abelian subgroup.

Proof. Let G be this group and C a sufficiently saturated elementary extension
of G . We work inside C. By Fact 5.2, there exists a finite intersection H of
centralisers of elements in A such that H is minimal up to finite index. The group
H contains A, and the centraliser of every element in A has finite index in H .
Consider the almost centre Z∗(H ) ofH consisting of elements inH the centraliser
of which has finite index in H . We claim that Z∗(H ) is a definable group. It is a
subgroup containing A. According to [26, Lemma 4.1.15], a definable subgroup B
of C has finite index in C if and only if the equalityDC(B,ϕ, k) = DC(C, ϕ, k) holds
for every formula ϕ and natural number k. So we have the following equality

Z∗(H ) =

{h ∈ H : DC(CH (h), ϕ, k) ≥ DC(H,ϕ, k), ϕ formula, k natural number}.

Recall that for a partial type ð(x,A), the sentence “DC(ð(x,A), ϕ, k) ≥ n” is a
type-definable condition on A as stated in [26, Remark 4.1.5], so the group Z∗(H )
is type-definable. By compactness and saturation, centralisers of elements inZ∗(H )
have bounded index in H , and conjugacy classes in Z∗(H ) are finite of bounded
size. The first observation implies that Z∗(H ) is definable, and the second one
together with [15, Theorem 3.1] show that the derived subgroup of Z∗(H ) is finite.
Note thatH and Z∗(H ) are A-definable, hence Z∗(H ) computed in G fulfills our
purpose. ⊣

Corollary 5.7. A weakly small infinite group the theory of which is simple has an

infinite definable finite-by-abelian subgroup.

Proof. Follows from Theorem 3.6 and Proposition 5.6. ⊣

Remark 5.8. Corollary 5.7 states thebest possible result as there areℵ0-categorical
simple groups without infinite abelian definable subgroups. For instance, infinite
extra-special groups of exponent p are ℵ0-categorical [9, Felgner], and supersimple
of SU -rank 1 as they can be interpreted in an infinite dimensional vector space
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over Fp endowed with a non degenerate skew-symmetric bilinear form. They have
no infinite definable abelian subgroup by [16, Plotkin].

Corollary 5.9. A weakly small supersimple group of SU -rank 1 is finite-by-
abelian-by-finite.

As noticed by Aldama in his thesis [1], Shelah’s result concerning abelian subsets
of a dependent group extends to a nilpotent subset of a dependent group. Actually
Aldama also shows that in a dependent groupG any solvable groupA is surrounded
by a definable solvable group of same derived length, provided that A be normal
in G . We are interested in analogues of these results in the context of a group with
simple theory. We propose the following definition:

Definition 5.10. A group G is almost solvable if there exists a finite sequence of
subgroups G0, G1, . . . , Gn such that

G0 = G D G1 D · · · D Gn = {1}

and such that Gi/Gi+1 is finite-by-abelian for all i . We call the sequence Gi an
almost derived series, and the least such natural number n the almost solubility class
of G .

An almost solvable group of class 1 is a finite-by-abelian group.

Lemma 5.11. letG be an almost solvable group of class n with almost derived series
G0, . . . , Gn . IfH is a subgroup ofG , thenH is almost solvable of class at most n with
almost derived series G0 ∩H,G1 ∩H, . . . , Gn ∩H .

Proof. For every i , the group Gi ∩ H/Gi+1 ∩ H is isomorphic to Gi+1 ·
(Gi ∩H )/Gi+1 andGi+1 · (Gi ∩H )/Gi+1 is a subgroup of Gi/Gi+1 hence finite-by-
abelian according to Lemma 5.5. ⊣

Corollary 5.12. In a group with simple theory, let A be a solvable subgroup of
derived length n. There is anA-definable almost solvable group of class at most 2n−1
containing A such that the members of the almost derived series are A-definable.

Proof. Let us show it by induction on the derived length n ofA. Without loss of
generality, we may work in a monster model C extending the ambient group. When
n equals 1, this is Proposition 5.6. Suppose that the result holds until n − 1. By
induction hypothesis, there is an A-definable almost solvable group G of derived
length 2n − 3 containing A′ with an almost derived series G0, . . . , G2n−3 such that

G0 = G D G1 D · · · D G2n−3 = {1}

and such that Gi/Gi+1 is finite-by-abelian and Gi is an A-definable group for all i .
We shall now use an argument of Wagner in [12]. By Fact 5.2 there is a finite
intersection H of A-conjugates of G0 which is minimal up to finite index. We may
assume thatH is a subgroup ofG0. Let us write H for the set ofA-conjugates ofH .
We claim that the elements of H are uniformly commensurable. To see that, we
consider the almost normaliser {g ∈ C : H g andH are commensurable} of H in C.
We write it N∗

C
(H ). By [26, Lemma 4.1.15], we have:

N∗
C(H ) =

{g ∈ C : DC(H ∩H g , ϕ, k) ≥ DC(H,ϕ, k), ϕ formula, k natural number}.



ON PROPERTIES OF (WEAKLY) SMALL GROUPS 109

It follows from [26, Remark 4.1.5] that N∗
C
(H ) is an A-type-definable group. By

compactness and saturation, two N∗
C(H )-conjugates of H are uniformly commen-

surable. N∗
C(H ) is in fact a definable group. As N

∗
C(H ) contains A, the elements of

H are uniformly commensurable. We may now apply Fact 5.3, and be able to find an
A-definable group IA commensurable with H and invariant by conjugation under
elements ofA. As IA is a finite extension of a finite intersection I ofA-conjugates of
G0, it still containsA′ so the group IAA/IA is abelian. According to Proposition 5.6,
there is an A-definable groupM such that

IAA/IA ≤M/IA ≤ NG(IA)/IA

where M ′/IA is finite. Note that I is a finite intersection of A-conjugates of G0,
so it is an A-definable group. Because I and I ∩ G0 are commensurable, we may
replace I by I ∩ G0 and assume that it is a subgroup of G0. As a subgroup of G0,
it is almost solvable of class at most 2n − 3 and has almost derived series whose
members are A-definable, namely I,G1 ∩ I . . . , G2n−3 ∩ I by Lemma 5.11. As IA/I
is finite, we apply again Lemma 5.11 and conclude that M is almost solvable of
class 2n − 1 with almost derived series M, IA, I IA , G1 ∩ I IA , . . . , G2n−3 ∩ I IA . The
groups appearing in this sequence are all A-definable, andM is as we desired. ⊣
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UNIVERSITÉ GALATASARAY
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