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ON THE DEFINABILITY OF RADICALS IN SUPERSIMPLE GROUPS

CÉDRIC MILLIET

Abstract. If G is a group with a supersimple theory having a finite SU -rank, then the subgroup of

G generated by all of its normal nilpotent subgroups is definable and nilpotent. This answers a question

asked by Elwes, Jaligot, Macpherson and Ryten. If H is any group with a supersimple theory, then the

subgroup of H generated by all of its normal soluble subgroups is definable and soluble.

§1. Introduction. Among the problems in the model theory of groups, is the one
of knowing which subgroups of a groupG are definable by a formula. For example,
the centraliser of an element a inG is defined by the quantifier free formula xa = ax
and the centre of G by (∀y) xy = yx. Similarly, finite sets, centralisers of finite sets
and iterated centres of G are always definable. But this is mostly the end of the list:
almost every other characteristic subgroup such as the commutator subgroup G ′,
the FC -centre, the Fitting subgroup or the soluble radical may not be definable,
not in first order logic at least: they all are countable union of definable sets. The
situation is even more complicated for the iterated FC -centres, the FC -soluble
radical or the FC -Fitting subgroup who have a higher complexity in the hierarchy
of definable sets.
In an algebraic group over an algebraically closed field, every subgroup cited
above is definable. The situation is far less straightforward in a group G which is
merely stable. Wagner has shown that the Fitting subgroup ofG is always definable
[18]. The question is still open for the soluble radical of G , but Baudish [3] has
proved that it is definable provided that G be superstable. The starting point of
their investigation was a theorem of Poizat [14] that every nilpotent (respectively
soluble) subgroup of G is contained in a definable nilpotent (respectively soluble)
one of the same nilpotency class (resp. derived length). Recently, many attempts
have beenmade to extend these results to awider context: let us cite [17, Shelah] and
[1, Aldama] for groups with dependent theory, [2, Altınel Baginski] for groups with
the descending chain condition on centralisers, [12,Milliet] for groups with a simple
theory and [6, Elwes Jaligot Macpherson Ryten], for supersimple groups, where it
is shown that the soluble radical of a supersimple groupG of finite rank is definable
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and soluble provided thatG eq eliminates ∃∞. Note that the formulation supersimple
group is a short-hand for group with a supersimple theory, not a variation on simple
groups. The authors of [6] also asked whever such a groupG had a largest nilpotent
normal subgroup F and if F would be definable. We give a positive answer here
while proving that the Fitting subgroup of a supersimple group of finite SU -rank
is definable and nilpotent. We also show that the soluble radical of a supersimple
group of arbitrary rank is a definable and soluble subgroup. As a corollary, the
FC -soluble radical of a supersimple group is virtually soluble and definable.

§2. Preliminaries on groups. If G is a group and x an element of G , we write
xG for the conjugacy class {g−1xg : g ∈ G} of x, and C (x) for its centraliser
{g ∈ G : g−1xg = x} in G . If y is another element of G , we write [x, y] for the
commutator x−1y−1xy. WhenA andB are subsets ofG , we write [A,B] for the set
of commutators [a, b] where a and b range overA andB respectively. We writeG (n)

for the nth term of the derived series of G defined inductively on n by putting G (0)

equal to G and G (n+1) the subgroup generated by the set [G (n), G (n)]. The group G
is soluble of derived length n if n is the smallest natural number such thatG (n) is {1}.
The FC -centreof a groupG is writtenFC (G) and is defined to be the set of g inG
such that gG is finite. By definition, the groupG is an FC -group if FC (G) equalsG .
Inductively on n, we call FCn+1(G) the preimage in G of FC (G/FCn(G)), with the
convention that FC0(G) is {1}. This defines an ascending chain of characteristic
subgroups of G . The group G is called FC -nilpotent if G equals FCn(G) for some
natural number n, the least such we call the FC -nilpotency class ofG . Finite groups
and nilpotent ones are both examples of FC -nilpotent groups. IfG/N is a quotient
group modulo a normal subgroup N of G , we write FCG(G/N) for the preimage
of FC (G/N) in G by the canonical surjection from G onto G/N .
A group G is virtually-P if it has a subgroup of finite index with property P.

Theorem 2.1 (Neumann [13]). Suppose that G is an FC -group whose conjugacy
classes are bounded by a natural number. Then the derived subgroup G ′ is finite and
G is virtually nilpotent of class 2.

Lemma 2.2. IfN is a finite normal subgroup ofG , then FC (G) equals FCG(G/N).

Proof. The canonical surjection fromG ontoG/N has a finite kernel. It follows
that the conjugacy class xG is finite if and only if (xN)G/N is finite. ⊣

Lemma 2.3. If H and N are two normal subgroups of G with N ≤ H , then
FCG(G/H )

/

N equals FCG/N
(

G/N
/

H/N
)

.

Proof. There is a canonical homomorphism from G/H onto G/N
/

H/N . It

follows that (xH )G/H is finite if and only if
(

(xN)H/N
)G/N

/

H/N
is finite. This

means precisely that x ∈ FCG(G/H ) if and only if xN ∈ FCG/N
(

G/N
/

H/N
)

. ⊣

Lemma 2.4. If for some natural number n the quotient FCn+1(G)/FCn(G) is finite,
then FCn+2(G) equals FCn+1(G).

Proof. We have

FCn+2(G)

FCn(G)
=
FCG

(

G/FCn+1(G)
)

FCn(G)
.
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By Lemma 2.3

FCn+2(G)

FCn(G)
= FCG/FCnG

(

G/FCn(G)

FCn+1(G)/FCn(G)

)

.

As FCn+1(G)/FCn(G) is finite, applying Lemma 2.2 we get

FCn+2(G)

FCn(G)
= FC

(

G

FCn(G)

)

=
FCn+1(G)

FCn(G)
.

⊣

Two subgroups of a given group G are commensurable if the index of their inter-
section is finite in both of them. Commensurability is an equivalence relation on
the set of subgroups of G .

Theorem 2.5 (Schlichting [16]). Let G be a group and H a subgroup of G such
thatH/H ∩H g remains finite and bounded by a natural number for all g in G . Then,
there exists a normal subgroupN of G such thatH/H ∩ N and N/N ∩H are finite.
Moreover, N is a finite extension of a finite intersection of G-conjugates of H . In
particular, if H is definable then so is N .

§3. Preliminaries on supersimple groups. Asupersimple groupG is equippedwith
a rank function taking values in the ordinals, and ranking every definable subset
of G . We write SU (X ) for the rank of a definable subset X of G . As there is no
other rank considered in the paper, we will simply say rank instead of SU -rank. We
shall not need the precise definition of the rank (we refer to [19] for more details),
but only some of its properties that we recall now. The rank is increasing: if X ⊂ Y
are two definable subsets ofG , then SU (X ) is smaller than or equal toSU (Y ). IfG
is supersimple, then so is each of its elementary extensions, and so is G eq, meaning
that every quotient group G/N by a definable normal subgroup N has an ordinal
rank. A definable set (in G eq) has rank zero if and only if it is finite. In particular,
if N is a definable normal subgroup of G , then SU (G/N) equals zero if and only if
N has finite index in G .
The following comes from [7, Remark 3.5] as a particular case of [19, Theo-
rem 5.5.4].

Theorem 3.1 (Wagner’s version of Zilber’s Indecomposability Theorem). Let G
be a supersimple group of finite rank, (Xi)i∈I a family of definable subsets ofG . Then,
there exists a definable subgroupH of G such that

(1) H is a subgroup of 〈Xi : i ∈ I 〉.
(2) Finitely many translates ofH cover Xi for every i .

If the sets Xi are normal in G , thenH may be chosen normal in G .

Corollary 3.2. If G is a supersimple group with finite rank, then the derived
subgroupG ′ is definable.

Proof. We follow exactly the proof of [9, Corollary 7.5]. Let C be the set of
commutators of G . By Theorem 3.1, there is a definable subgroup H of G ′ with
H normal in G such that finitely many translates of H cover C . It follows that
the set of commutators in G/H is finite, so the derived group (G/H )′ is finite by
[10, p. 110]. The group G ′ is a finite union of cosets ofH hence definable. ⊣

Any ordinal α decomposes in base ù: there are unique ordinals α1 > · · · > αn
and non-zero natural numbers k1, . . . , kn such that α equals ùα1 .k1 + · · ·+ùαn .kn .
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If α and â are two ordinals, we may assume that α equals ùα1 .k1 + · · · + ùαn .kn
and â equals ùα1 .ℓ1+ · · ·+ùαn .ℓn for the same α1, . . . , αn , adding some additional
possibly zero ki and ℓi if necessary. We write α ⊕ â for their Cantor sum defined by

α ⊕ â = ùα1 .(k1 + ℓ1) + · · ·+ ùαn .(kn + ℓn).

Theorem 3.3 (Lascar inequalities). Let G be a supersimple group, andH a defin-
able normal subgroup of G . Then

SU (H ) + SU (G/H ) ≤ SU (G) ≤ SU (H ) ⊕ SU (G/H ).

As a consequence, note that two definable subgroups of a supersimple group
which are commensurable have the same rank.

Proposition 3.4. LetG be a supersimple group of rankùα1 .k1+ · · ·+ùαn .kn with
α1 > · · · > αn. Then for every natural number i such that 1 ≤ i ≤ n, there is a
definable normal subgroup H of G of rank ùα1 .k1 + · · · + ùαi .ki . The group H is
unique up to commensurability.

Remark 3.5. Proposition 3.4 is the definable version of [20, Wagner, Corol-
lary 4.2]. It generalises what is known for superstable groups [4, Corollary 2.7
p. 27].

Proof. Wemay assume thatG is κ-saturated for some infinite cardinal κ and we
say that a set is small if its cardinal is smaller than κ. We write âi forùα1 .k1+ · · ·+
ùαi .ki . By [20, Corollary 4.2], there is a type-definable normal subgroup H of G
having rank âi . Recall that âi is by definition the rank of each of the generic types
of H . By [20, Theorem 4.4], the group H is the intersection of definable groups
Hi for i in I . We may close this family by finite intersections, remove the members
that do not have minimal rank and assume that every Hi has rank â say and that
they are all commensurable. It follows that for every i , the groupH has small index
in Hi so H is a generic type of Hi by [19, Lemma 4.1.15]. Thus â equals âi . Take
anyHi . AsH is normal in G ,H

g
i andHi are commensurable for every g in G . Let

FN(Hi ) stand for the set of g inG such thatHi/Hi ∩H
g
i is finite. On the one hand,

the group FN(Hi ) is the countable union of the definable sets FNm(Hi) when m
ranges over N and where FNm(Hi) stands for {g ∈ G : |Hi : Hi ∩H

g
i | ≤ m}. On

the other hand, by [19, Lemma 4.1.15] and [19, Remark 4.1.5], it is type-definable.
It must be definable by compactness and saturation. It follows that Hi/Hi ∩ H

g
i

remains bounded by some natural number when g ranges overG . By Theorem 2.5,
there is a definable normal subgroup N of G commensurable with H hence of
rank âi . If K is another group satisfying the desired requirements, then K/N ∩K
andN/N ∩K are small according to [20, Corollary 4.2] hence finite by compactness
and saturation. ⊣

Lemma 3.6. [12, Proposition 4.1] If G is a group with (super)simple theory, its
FC -centre is definable.

Proof. It is shown in [12] that FC (G) is definable by a formula ø provided that
G is an ℵ0-saturated extension of G . Actually the same formula ø computed in G
defines FC (G). ⊣
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§4. The Fitting subgroup. Let G be any group. We call the Fitting subgroup of
G the subgroup generated by all of its nilpotent normal subgroups. We write it
as Fit(G). It is worth mentioning that the Fitting subgroup is definable if it is
nilpotent. Namely x belongs to Fit(G) if and only if the subgroup generated by its
conjugacy class xG is nilpotent. It follows that

Fit(G) =
⋃

n≥1

{

x ∈ G :
[

xG ∪ x−G , . . . , nx
G ∪ x−G

]

= {1}
}

where for every subset X ofG the set [X, . . . , nX ] is defined inductively on n ≥ 0 by

[X, 0X ] = X and [X, . . . , n+1X ] =
[

[X, . . . , nX ], X
]

.

The observation that Fit(G) is definable if it is nilpotent was first made by Ould
Houcine, and the simple proof above was independently provided by the referee
of [2].

Proposition 4.1. Let G be a group and F a normal subgroup of G . Assume that
F ≤ FCn(G) for some natural number n (in particular, F is FC -nilpotent). If G/F
is FC -nilpotent, then so is G .

Proof. Assume that G/F is FC -nilpotent of class m. There is a surjection from
G/F ontoG/FCn(G). As recalled in [12], the image of an FC -nilpotent group by a
group homomorphism is FC -nilpotent. It follows that G/FCn(G) is FC -nilpotent
of class at most m, so that FCm+n(G) equals G . ⊣

We recall Hall’s criterion for nilpotence.

Theorem 4.2 (Hall [8]). LetG be a group andN a normal subgroup ofG . IfG/N ′

and N are nilpotent, then G is nilpotent.

Two other proofs of Theorem 4.2 can be found in [15] and [11], with a bound on
the nilpotency class of G depending on the classes of N and G/N ′ in [11]. Note
that sinceG/N ′′

/

N ′/N ′′ andG/N ′ are isomorphic, a straightforward induction on
the nilpotency class of N reduces the proof to the case where N is 2-nilpotent.

Proposition 4.3 (adapted fromWagner [12, Proposition 4.3]). Let G be a group
with a (super)simple theory. If G is FC -nilpotent of class n, then G has a definable
normal subgroup of finite index which is nilpotent of class at most 2n.

Theorem 4.4 (Milliet [12, Corollary 4.5]). Let G be a group with a (super)simple
theory. IfN is a normal nilpotent subgroup of class n, thenN is contained in a normal
definable nilpotent subgroup of class at most 3n.

We can now answer the question asked in [6].

Theorem 4.5. LetG be a supersimple group with finite rank. The Fitting subgroup
of G is definable and nilpotent.

Proof. By Lemma 2.4, for big enough n, the quotient FCn+1(G)/FCn(G) is
either trivial or infinite. By Lascar’s equality, there exists a natural number such
that FCn(G) = FCn+1(G). We call Gn the quotient group G/FCn(G) so that Gn
has a trivial FC -centre. Let Fn be its Fitting subgroup.

Claim 1. We may assume that FC (G) is trivial.

proof of claim 1. We need just assume that Fn is definable and nilpotent and
show thatFit(G) is definable and nilpotent too. Note thatFn isFC -nilpotent. LetF
be its pull-back inG so that we have F/FCn(G) = Fn. The groupF is FC -nilpotent
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by Proposition 4.1, and definable. By Proposition 4.3, F has a definable subgroup
of finite index which is nilpotent, so it must have a normal oneN . It follows that F
contains a maximal normal (in G) nilpotent subgroup H of finite index so thatH
equals Fit(G). Being a finite extension of N , Fit(G) is definable. ⊣Claim 1

Claim 2. We may assume that G has a definable normal 2-nilpotent subgroup.

proof of claim 2. On the one hand, if every nilpotent normal subgroup of G is
abelian, then Fit(G) is abelian. In this case, by the remark made at the beginning
of this section (or Theorem 4.4), Fit(G) must be definable. On the other hand, if
there is a non abelian nilpotent normal subgroup, then there is a definable one by
Theorem 4.4. Call it N . The group Z2(N) has the required properties. ⊣Claim 2

Weproceed by induction onSU (G) to prove Theorem 4.5. IfSU (G) is zero, then
G is finite and so is Fit(G). If SU (G) equals n + 1, by Claim 2, there is a normal
nilpotent definable subgroup N of G of nilpotency class 2. By Corollary 3.2, the
derived subgroupN ′ is definable. As N ′ is normal in G , it is infinite by Claim 1, so
SU (N ′) ≥ 1. By Lascar’s equality, we have SU (G/N ′) ≤ n, and we may apply the
induction hypothesis to G/N ′. It follows that Fit(G/N ′) is definable and nilpotent.
Let F be its preimage in G so that we have F/N ′ = Fit(G/N ′). By Theorem 4.2,
the group F is nilpotent. Thus F equals Fit(G). ⊣

§5. The soluble radical. Wecall the soluble radical ofG the subgroup generated by
all soluble normal subgroups and write it as R(G). It is a locally soluble subgroup.
We recall a simple and useful remark by Ould Houcine:

Lemma 5.1 (Ould Houcine). LetG be any group and suppose thatR(G) is soluble.
Then R(G) is definable.

Proof. An element x belongs toR(G) if and only if the subgroup generated by its
conjugacy class xG is soluble. Note that the derived subgroup 〈xG 〉(1) is generated
by all commutators of the form [ag , bh ] where a and b equal x or x−1 and g and h
range over G . Thus the following equality holds

R(G) =
⋃

n≥1

{

x ∈ G :
(

xG ∪ x−G
)(n)
= {1}

}

where for every subset X of G the set X (n) is defined inductively on n ≥ 0 by

X (0) = X, X (1) = [X,X ] and X (n+1) =
[

X (n), X (n)
]

.

It follows that R(G) is a countable union of increasing definable sets. As R(G) is
soluble, this union is actually a finite one, and R(G) is definable. ⊣

Theorem 5.2 (Milliet [12, Corollary 4.11]). LetG be a groupwith a (super)simple
theory and S a normal soluble subgroup of derived length n. Then S is contained in a
definable soluble subgroup of derived length at most 3n.

Theorem 5.3. The soluble radical of a supersimple group is definable and soluble.

Proof. We shall proceed by transfinite induction on the rank of G . For that, we
first show the following claim:

Claim. If G has a normal subgroup H such that both R(G/H ) and R(H ) are
soluble, then R(G) is definable and soluble.
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Proof of the claim. Let ℓ be a natural number bounding the derived length of
both R(G/H ) and R(H ). Let S be a normal soluble subgroup of G of derived
length n. It follows that SH/H and S ∩H are soluble of derived length no greater
than ℓ . As SH/H is isomorphic to S/S ∩H , we must have S(ℓ) ⊂ S ∩ H which
in turn yields S(2ℓ) = {1}. It follows that n is less than or equal to 2ℓ , so that
the solubility class of S is bounded, independently on S. This means that R(G) is
soluble, hence definable by Lemma 5.1. ⊣Claim

We can now inductively prove our theorem: if G has rank zero, then G is finite
and so is R(G).
If G has a non-monomial rank, there is a natural number k > 0 and ordinals α
and â such that SU (G) equals ùα .k + â with 0 < â < ùα . By Proposition 3.4,
there is a normal subgroup H of G having rank ùα .k. By the Lascar inequalities,
both SU (G/H ) and SU (H ) are less than SU (G) so we may apply the induction
hypothesis to H and G/H and it follows from the Claim that R(G) is soluble and
definable.
If G has a monomial rank, it is of the form ùα .k. Let us first suppose that
there is some a in R(G) with aG having rank at least ùα . By Theorem 5.2, the
conjugacy class aG is contained in a definable normal soluble group S. As the rank
is increasing, S must have rank at least ùα . In that case, either S and G have the
same rank soG is virtually soluble and we are done, or SU (S) < SU (G). Then, by
the Lascar inequalities 3.3 we haveSU (G/S) < SU (G) andwemay again apply the
Claim. One last case to deal with: wemay haveSU (aG ) < ùα for all a inR(G). As
aG and G/C (a) are in definable bijection it follows that SU (G/C (a)) < ùα for all
a inR(G). By the Lascar inequalities, this is equivalent to saying thatSU (G/C (a))
is zero for all a in R(G). So R(G) is a subgroup of the FC -centre of G which is
definable by Lemma 3.6 and virtually nilpotent of class 2 by Theorem 2.1. It follows
that R(G) is also virtually nilpotent of class 2 (and locally soluble) hence soluble.
In every case, R(G) is definable and soluble. ⊣

§6. The FC -soluble radical.

Definition 6.1 (adapted from Duguid, McLain [5]). A group G is FC -soluble if
there exists a finite sequence of subgroups G0, G1, . . . , Gn of G such that

G = G0 D G1 D · · · D Gn = {1}

and such that Gi/Gi+1 is an FC -group for all i . We call the least such natural
number n the FC -solubility class of G .

If N is a normal subgroup of G , then G is FC -soluble if and only if G/N and N
are FC -soluble.
We define the FC -soluble radical of a group to be the subgroup generated by every
normal FC -soluble subgroup. This is a locally FC -soluble subgroup:

Lemma 6.2. Let H and K be two normal FC -soluble subgroups of a group G of
class h and k. The productHK is FC -soluble of FC -solubility class at most h + k.

Proof. The quotientHK/K is isomorphic toH/H ∩K . So K andHK/K both
are FC -soluble. ⊣

Proposition 6.3 (Milliet [12, Corollary 4.9]). A (super)simple FC -soluble group
is virtually-soluble.
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Corollary 6.4. The FC -soluble radical of a supersimple group is definable and
virtually soluble.

Proof. By Theorem 5.3, R(G) is definable so the quotient G/R(G) is super-
simple and has no non-trivial normal soluble subgroup. Let us write it as GR. By
Proposition 6.3, an FC -soluble subgroup of GR is virtually-soluble, hence finite, so
every normal FC -soluble subgroup is contained in FC (GR). By Lemma 3.6 and
Theorem 2.1, the group FC (GR) must be finite. Its preimage in G is definable,
virtually soluble, and contains every normal FC -soluble subgroup of G . ⊣
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