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ON THE RADICALS OF A GROUP THAT DOES NOT HAVE THE

INDEPENDENCE PROPERTY

CÉDRICMILLIET

Abstract. We give an example of a pure group that does not have the independence property, whose

Fitting subgroup is neither nilpotent nor definable andwhose soluble radical is neither soluble nor definable.

This answers a question asked by E. Jaligot in May 2013.

The Fitting subgroupof a stable group is nilpotent and definable (F.Wagner [11]).
More generally, the Fitting subgroup of a group that satisfies the descending chain
condition on centralisers is nilpotent (J. Derakhshan, F. Wagner [5]) and definable
(F. Wagner [12, Corollary 2.5], see also [10] and [1]). The soluble radical of a super-
stable group is soluble and definable (A. Baudish [2]). Whether this also holds for a
stable group is still an open question.
Inspired by [9], we provide an example of a pure group that does not have the inde-
pendence property, whose Fitting subgroup is neither nilpotent nor definable and
whose soluble radical is neither soluble nor definable. The proofs require some
algebra because we have decided to provide a precise computation of the Fitting
subgroup and soluble radical of the group considered.

Definition 1 (independence property). LetM be a structure. A formula ϕ(x, y)
has the independence property inM if for all n ∈ �, there are tuples a1, . . . , an and
(bJ )J⊂{1,...,n} of M such that

(
M |= ϕ(ai , bJ )

) ⇐⇒ i ∈ J . M does not have
the independence property (or is NIP for short) if no formula has the independence
property inM .

Let L be a first order language,M an L-structure. A set X is interpretable inM
if there is a definable subset Y ⊂ Mn in M and a definable equivalence relation
E on X such that X = Y/E. A family {Yi/Ei : i ∈ I } of interpretable sets in
M is uniformly interpretable in M if the corresponding families {Yi : i ∈ I } and
{Ei : i ∈ I } are uniformly definable inM .
Let L be yet another first order language. An L-structure N is interpretable in
M if its domain, functions, relations, and constants are interpretable sets in M .
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ON THE RADICALS OF A NIP GROUP 1445

A family of L-structures {Ni : i ∈ I } is uniformly interpretable inM if the family
of domains is uniformly interpretable in M , as well as, for each symbol s of the
language L, the family {si : i ∈ I } of interpretations of s in Ni .
Lemma 2 (D. Macpherson, K. Tent [9]). Let M be an L-structure that does not
have the independence property and let {Ni : i ∈ I } be a family ofL-structures that is
uniformly interpretable inM . For every ultrafilter U on I , theL-structure∏i∈I Ni/U
does not have the independence property.

Corollary 3. Let m and n be natural numbers and p a prime number. Let us
consider the general linear groupGLm(Z/pnZ) over the finite ring Z/pnZ. Let U be
an ultrafilter on N and let G be the ultraproduct

G =
∏
n∈N
GLm(Z/pnZ)

/
U .

The pure groupG does not have the independence property.

Proof. Consider the groupGLm(Zp) over the ringZp of p-adic integers, and the
normal subgroups 1+pnMm(Zp) for every n � 1. One has the group isomorphism

GLm(Z/pnZ) � GLm(Zp)
/
1+ pnMm(Zp).

Therefore, the family of groups {GLm(Z/pnZ) : n ∈ N} is uniformly interpretable
in the ring Mm(Qp), which is interpretable in the field Qp of p-adic numbers,
hence NIP by [8]. By Lemma 2, the group G does not have the independence
property. �

§1. Preliminaries on the normal structure of GLm(Z/pnZ). Given a field k,
the normal subgroups of the general linear group GLm(k) are precisely the sub-
groups of the centre and the subgroups containing the special linear group SLm(k)
(J. Dieudonné [4]). In particular, the maximal normal soluble subgroup of GLm(k)
is the centre, except for the two soluble groupsGL2(F2) andGL2(F3). The situtation
is different for the general linear group GLm(Z/pnZ) over the ring Z/pnZ, whose
normal subgroups are classified by J. Brenner [3]. We follow also W. Klingenberg
[7] who deals with the normal subgroups of the general linear group over a local
ring R, which applies in particular to Z/pnZ.
The centre of GLm(Z/pnZ) is the subgroup of homotheties (Z/pnZ)× · 1. The
general congruence subgroup ofGLm(Z/pnZ) of order � is

GCm(�) = (Z/pnZ)× · 1+ p�Mm(Z/pnZ).
It is a normal subgroup of GLm(Z/pnZ). For every element g of GLm(Z/pnZ),
there is a maximal � � n such that g belongs to GCm(�). We call � the congruence
order of g.
The special linear subgroup of GLm(Z/pnZ) of matrices having determinant 1 is
written SLm(Z/pnZ). An elementary transvection is an element of SLm(Z/pnZ) of
the form 1 + reij for r ∈ Z/pnZ and i �= j. A transvection is a conjugate of an
elementary transvection.
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1446 CÉDRIC MILLIET

Proposition 1.1 (J. Brenner [3, Theorem 1.5]). Let � a transvection of congruence
order � . The normal subgroup ofGLm(Z/pnZ) generated by � is〈

�GLm(Z/p
nZ)

〉
= SLm(Z/pnZ) ∩

(
1+ p�Mm(Z/pnZ)

)
.

Theorem 1.2 (J. Brenner [3]). Let mp � 6 and g an element of GLm(Z/pnZ) of
congruence order � . The normal subgroup

〈
gGLm(Z/p

nZ)
〉
ofGLm(Z/pnZ) generated

by g satisfies

SLm(Z/pnZ) ∩
(
1 + p�Mm(Z/pnZ)

) ⊂ 〈
gGLm(Z/p

nZ)
〉
⊂ (Z/pnZ)× · 1 + p�Mm(Z/pnZ).

For any real number x, we write 
x� for the floor of x, that is 
x� is the greatest
integer k such that k � x.
Lemma 1.3. For any m � 2, � � 1, and n � 1, the group 1+ p�Mm(Z/pnZ) is a
normal nilpotent subgroup ofGLm(Z/pnZ) of nilpotency class

⌊
n − 1
�

⌋
.

Proof. For every x in Mm(Z/pnZ), one has

(1+ px)p = 1+
p∑
k=1

(px)kC kp = 1+ p
2y.

It follows that 1+ pMm(Z/pnZ) is a nilpotent p-group. Its iterated centres are

Z(Hn) = (1 + pZ/pnZ) · 1+ pn−1Mm(Z/pnZ)
Z2(Hn) = (1 + pZ/pnZ) · 1+ pn−2Mm(Z/pnZ)

...

Zn−2(Hn) = (1 + pZ/pnZ) · 1+ p2Mm(Z/pnZ)
Zn−1(Hn) = 1+ pMm(Z/pnZ),

so the nilpotency class of 1+ pMm(Z/pnZ) is n− 1 when n � 1. For every natural
number q satisfying n − q� � � , one has

Zq
(
1+ p�Mm(Z/pnZ)

)
=

(
1 + p�Z/pnZ

) · 1+ pn−q�Mm(Z/pnZ),
so the greatest q such that the above qth centre is a proper subgroup is the greatest
q satisfying n − q� > � . As one has

n − q� > � ⇐⇒ n − 1− q� � � ⇐⇒ q � n − 1
�

− 1,

this greatest q is precisely
⌊
n − 1
�

⌋
− 1. �

For any real number x, we write �x
 for the ceiling of x, that is �x
 is the least
integer k such that k � x.
Lemma 1.4. For any 1 � � � n andm � 3, the group 1+p�Mm(Z/pnZ) is soluble
of derived length

⌈
log2
n

�

⌉
.
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ON THE RADICALS OF A NIP GROUP 1447

Proof. Let us write PCm(�) = 1+ p�Mm(Z/pnZ) and show that(
SLm(Z/pnZ) ∩ PCm(�)

)′
= PCm(�)

′ = SLm(Z/pnZ) ∩ PCm(2�).
Let α = 1− p�� and � = 1− p�	 be two elements of 1+ p�Mm(Z/pnZ). Then
α�α−1�−1 =

(
1− p��) (1− p�	) (1+ p�� + · · ·+ pn��n) (1+ p�	 + · · ·+ pn�	n)

= 1+ p2�(�	 − 	�) + p3�(· · · ) + · · · ,
so PCm(�)

′ is included in SLm(Z/pnZ) ∩ PCm(2�). Conversely, consider the two
elementary transvections 
 = 1+ p�e12 and � = 1+ p�e21. One has


�
−1�−1 = (1 + p�e12)(1 + p�e21)(1− p�e12)(1− p�e21)
= 1+ p2�e11 − p2�e22 − p3�e12 + p3�e21.

It follows that
(
SLm(Z/pnZ) ∩ PCm(�)

)′
contains an element that lies in

PCm(2�) \ PCm(2� + 1). As
(
SLm(Z/pnZ)∩ PCm(�)

)′
is a characteristic subgroup

of SLm(Z/pnZ) ∩ PCm(�), it is normal in GLm(Z/pnZ). By Theorem 1.2,(
SLm(Z/pnZ) ∩ PCm(�)

)′
contains SLm(Z/pnZ) ∩ PCm(2�).

We have thus shown that for every natural number k, the kth derived subgroup
of PCm(�) is

PCm(�)
(k) = SLm(Z/pnZ) ∩ PCm(2k�).

The derived length of PCm(�) is the least k such that 2k� � n. �
Lemma 1.5. For natural numbers k and n � k2 + k, let �n(k) = 1 +

⌊
n

k + 1

⌋
.

Then �n(k) is the smallest natural number satisfying the equality
⌊
n

�n(k)

⌋
= k.

Proof. Let n = q(k + 1) + r be the Euclidian division of n by k + 1, with q � k
and 0 � r < k + 1. Then one has

0 <
k + 1− r
1 + q

� 1 hence
⌊
n

�n(k)

⌋
=

⌊
(k + 1)q + r
1 + q

⌋
=

⌊
k + 1− k + 1− r

1 + q

⌋
= k,

so �n(k) satisfies the equality. It is the smallest such, as one has⌊
n

�n(k)− 1
⌋
=

⌊
n⌊
n
k+1

⌋
⌋
=

⌊
n

q

⌋
=

⌊
k + 1 +

r

q

⌋
� k + 1.

�
Lemma 1.6. For natural numbers k � 1 and n � 2k , let dn(k) =

⌈ n
2k

⌉
. Then

dn(k) is the smallest natural number satisfying the equality
⌈
log2

n

dn(k)

⌉
= k.

Proof. One has
n

2k
�

⌈ n
2k

⌉
<
n

2k
+ 1

hence

k − 1 � k − log2
(
1 +
2k

n

)
< log2

(
n

� n2k 

)

� k,
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1448 CÉDRIC MILLIET

so that dn(k) satisfies the equality. It is the smallest such, as⌈
log2

(
n⌈

n
2k

⌉− 1
)⌉
=

⌈
log2

(
2k

2k
n

⌈
n
2k

⌉− 2k
n

)⌉
=

⌈
k − log2

(
2k

n

⌈ n
2k

⌉
− 2

k

n

)⌉
� k + 1.

�

§2. Radicals of G . We now consider
G =

∏
n∈N
GLm(Z/pnZ)

/U .
We call Fitting subgroup of G and write F (G) the subgroup generated by all its
normal nilpotent subgroups. By Zorn’s Lemma, any nilpotent subgroup of G of
nilpotency class k is contained in a maximal such, which might not be unique.

Lemma 2.1. There is a first order formula ϕk in the language of groups such that,
for any group N, the group N is nilpotent of class k if and only if N |= ϕk .
Proof. Consider the formula

∀x1 · · · ∀xk [x1, [x2, [· · · , [xk−1, xk ] · · · ]]] = 1
∧ ∃y1 · · · ∃yk−1[y1, [y2, [· · · , [yk−2, yk−1] · · · ]]] �= 1. �

Theorem 2.2 (Łos). Let (Mi)i∈N be a collection of L-structure, U an ultrafilter
on N, and M the ultraproduct

∏
i Mi

/U . One has M |= ϕ if and only if the set
{i ∈ N :Mi |= ϕ} is in U .
Theorem 2.3 (Fitting subgroup of G). If the ultrafilter U is nonprincipal, for
every natural number k, G has a unique maximal normal nilpotent subgroup Nk of
nilpotency class k

Nk =
∏
n∈N

(
(Z/pnZ)× · 1+ p1+
 n−1k+1 �Mm(Z/pnZ)

)/
U ,

hence the Fitting subgroup of G is

F (G) =
∞⋃
k=1

Nk.

F (G) is neither nilpotent, nor definable.

Proof. Let k be a fixed natural number. By Lemma 1.3 and Lemma 1.5, the
normal subgroup

(Z/pnZ)× · 1+ p1+
 n−1k+1 �Mm(Z/pnZ)
of GLm(Z/pnZ) has nilpotency class k for all but finitely many n. As U contains
the Fréchet filter and as being of nilpotency class k is expressible by a first order
formula in the pure language of groups according to Lemma 2.1, by Łos Theorem,
the ultraproduct∏

n∈N

(
(Z/pnZ)× · 1+ p1+
 n−1k+1 �Mm(Z/pnZ)

)/
U

is a normal nilpotent subgroup of class k ofG . Reciprocally, if g belongs to a normal
nilpotent subgroup of class k, then gG generates a normal nilpotent subgroup of

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jsl.2015.56
Downloaded from http:/www.cambridge.org/core. IP address: 78.194.214.249, on 20 Dec 2016 at 12:37:58, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jsl.2015.56
http:/www.cambridge.org/core


ON THE RADICALS OF A NIP GROUP 1449

class at most k. By Łos Theorem, there is a set I ∈ U such that for all n ∈ I , the
conjugacy class gGnn generates a nilpotent normal subgroup

〈
gGnn

〉
of Gn of class

at most k. Let n ∈ I be fixed. By Theorem 1.2, there is a unique natural number
1 � � � n such that
SLm(Z/pnZ) ∩

(
1+ p�Mm(Z/pnZ)

) ⊂ 〈
gGnn

〉 ⊂ (Z/pnZ)× · 1+ p�Mm(Z/pnZ).
As 1+ p�Mm(Z/pnZ) is nilpotent of class

⌊
n−1
�

⌋
, one must have k �

⌊
n−1
�

⌋
. From

Lemma 1.5, it follows that � � �n−1(k) for all but finitely many n in I , so that g
belongs to the desired ultraproduct.
To show that the Fitting subgroup ofG is not definable, let gn,� be the elementary
transvection 1+ p�eij ofHn for every 1 � � < n. By Proposition 1.1, one has〈

gGnn,�

〉
= SLm(Z/pnZ) ∩

(
1+ p�Mm(Z/pnZ)

)
,

hence
Zq

(〈
gGnn,�

〉)
= SLm(Z/pnZ) ∩ Zq

(
1+ p�Mm(Z/pnZ)

)
,

so gGnn,� generates a nilpotent subgroup of nilpotency class
⌊n
�

⌋
. For every � � 1, let

n = kn� + rn where kn and rn denote the quotient and rest of the Euclidian division
of n by � and let g� denote the class modulo U of(
1GLm(Z/Z), 1GLm(Z/pZ), . . . , 1GLm(Z/p�Z), g�+1,1, g�+2,1, . . . , g2�,2, g2�+1,2, . . . , gn,kn , . . .

)
.

As
⌊
n

kn

⌋
= � holds for every n � �2, the normal closure 〈g� 〉G is nilpotent of

nilpotency class � for every � � 1. Note that G is ℵ1-saturated by [6, Theorem 5.6].
By [10, Theorem 1.3], the Fitting subgroup of G is not definable. �
Lemma 2.4. There is a first order formula ϕ� in the language of groups such that,
for any group S, the group S is soluble of derived length � if and only if S |= ϕ� .
Proof. Consider the term t� (x1, . . . , x2� ) defined inductively by setting t1(x1, x2)
to [x1, x2] and t�+1(x1, . . . , x2�+1 ) to [t�(x1, . . . , x2� ), t� (x2�+1, . . . , x2�+1 )]. Then
consider the formula

∀x1 · · · ∀x2� t�(x1, . . . , x2� ) = 1 ∧ ∃y1 · · · ∃y2�−1 t�−1(y1, . . . , y2�−1 ) �= 1. �
We call soluble radical ofG andwriteR(G) the subgroup generated by all its normal
soluble subgroups.

Theorem 2.5 (soluble radical of G). If the ultrafilter U is nonprincipal, for every
natural number � , G has a unique maximal normal soluble subgroup S� of derived
length �

S� =
∏
n∈N

(
(Z/pnZ)× · 1+ p� n2� 
Mm(Z/pnZ)

)/
U ,

hence the soluble radical of G is

R(G) =
∞⋃
�=1

S� = F (G).

R(G) is neither soluble, nor definable.
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1450 CÉDRIC MILLIET

Proof. By Lemma 1.4, Lemma 1.6, Lemma 2.4 and Łos Theorem, S� is a normal
soluble subgroup of G of derived length � . By Theorem 1.2 and Lemma 1.6, S� is

maximal such. Note that 1+
⌊
n
2�+1

⌋
�

⌈
n
2�
⌉
holds for every n and � , so that one has

S� ⊂ N2� hence R(G) and F (G) coincide. �
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PÔLE DEMATHÉMATIQUES DE L’INSA DE LYON
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