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VARIATIONS SUR UN THEME DE ALDAMA ET SHELAH

CEDRIC MILLIET

Abstract. We consider a group G that does not have the independence property and study the defin-
ability of certain subgroups of G. using parameters from a fixed elementary extension G of G. If X is a
definable subset of G, its trace on G is called an externally definable subset. If H is a definable subgroup
of G. we call its trace on G an external subgroup. We show the following. For any subset 4 of G and any
external subgroup H of G. the centraliser of A4, the A-core of H and the iterated centres of H are external
subgroups. The normaliser of H and the iterated centralisers of 4 are externally definable. A soluble sub-
group S of derived length ¢ is contained in an S-invariant externally definable soluble subgroup of G of
derived length £. The subgroup S is also contained in an externally definable subgroup X N G of G such
that X generates a soluble subgroup of G of derived length £. Analogue results are discussed when G is
merely a type definable group in a structure that does not have the independence property.

Given a group G, a subset X C G is definable in G if there exist a first-order for-
mula ¢(x, j) and parameters @ from G such that X consists of all g € G such
that p(g.a) holds in G. A subset X C G is externally definable if there is an ele-
mentary extension G of G and parameters a in G such that X consists of all
g € G such that ¢(g.a) holds in G. We write ¢(G. a) for such a set X if we want
to stress on the defining formula ¢, otherwise we write X N G where X stands
for ¢(G. a). Definable subsets and externally definable ones coincide for the field
R of real numbers (L. Van den Dries [28]). for the field Q, of p-adic numbers
(F. Delon [9]). for an algebraically closed field and more generally for stable
structures (it follows from the definability of types).

They do not coincide in general: in the ordered abelian group (Q.+. <). the
interval | V2, +oo[ is not definable in Q. but externally definable using the irrational

parameter v/2. Externally definable sets play an important role in structures that do
not have the independence property, such as (Q, +. <). They correspond to finite
unions of convex subsets in the particular case of o-minimal and weakly o-minimal
structures. Expanding the language of a weakly o-minimal structure by unary pred-
icates interpreting finite unions of convex subsets preserves weak o-minimality
(B. Baizhanov [3]). Expanding the language of a structure that does not have
the independence property by predicates interpreting externally definable subsets
preserves the absence of the independence property (S. Shelah [25]).
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A group G does not have the independence property if for every first order formula
@(x, 7). the Vapnik—Chervonenkis dimension of the family {¢(G.g): g € G} is
finite. We shall also use the short hand NIP group. S. Shelah [25] and R. de Aldama
[7] began investigating definable subgroups of G using external parameters lying
in a fixed |G|*-saturated elementary extension G of G. S. Shelah showed that if G
has an infinite abelian subgroup A, there exists a definable abelian subgroup of G
that contains infinitely many elements of 4. R. de Aldama went on showing that
for any nilpotent subgroup N C G, there is a definable nilpotent subgroup of G
that contains N and has the same nilpotency class as NV, and that for any soluble
subgroup S C G thatis normalin G, there is a definable soluble subgroup of G that
contains S and has the same derived length as S. As we were further investigating
the soluble case trying to get rid of the strong normality assumption, we had to
cope with subgroups closely related to the infinitesimal numbers, in the following
way: in a nonprincipal ultrapower RY of the field of real numbers, the subgroup J
of infinitesimal numbers is not definable in R¥. There is an external parameter &
in an elementary extension R of RY such that J = ]—e. [, so that J is externally
definable as a set. J is not the trace of a definable subgroup of R, however it is the

. . . . . . -1 1
conjunction of the uniform filtering family of symmetric definable sets ] P [

that defines a group both in R¥ and 4.

We call a subgroup H C G discernible if there is a subgroup H C G that is
the intersection of a uniform filtering family of symmetric definable subsets of G
such that H = HN G (we call H a nice subgroup of G). Discernible subgroups
are examples of externally definable subsets, and in the particular case when G is
a stable group. they coincide with definable subgroups (see Lemma 3.6). We call
the subgroup H C G external if there is a definable subgroup of H C G such that
H = HnN G. Our main results are the following.

TueoreM 0.1 (finding external subgroups). Let G be a NIP group. G a |G|*-
saturated elementary extension of G, and H = HN G an external subgroup of G.

(1) Thereis n € w such that for every A C G, there are ay, ... .a, in G such that
Cg(A4) = Cg(ay. ..., a,).
(2) Forevery n € w, there is a definable subgroup K C G such that
H=KNG and Z,H)=2Z7Z,K)NG.
(3) Thereis n € w such that for every A C G, there are ay, ... .a, in G such that
(JH=H"N--NH"NG.
acd

TueoreM 0.2 (finding discernible subgroups). Let G be a NIP group, G a |G|*-
saturated, |G |"-homogeneous elementary extension of G and H = HNG a discernible
subgroup of G

(1) For every n € w. there are nice subgroups K. Z,, C G such that

H=KNG  Z.H)=Z,NG. and Z,C Z,(K).
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(2) There are n € w and a nice subgroup K C G such that for every A C G, there
areay,...,a, in G with

H=KNG and [|H=K"N---nK"NG.
acA
(3) There are nice subgroups K C Hand N C Ng(K) of G such that

H=KNG and NGg(H)=NNG.

(4) There are n € w and a nice subgroup K C G such that for every A C G and
A C Aut(G/A). there area. .. ..6, in Aut(G/A) with

H=KNG and ()H"=K"N---NK"NG.
oe
(5) Foreveryn € wand A C G, the nth-centraliser CZ(A) is a discernible subgroup
of G.
TueorEM 0.3 (soluble envelopes). Let G be a NIP group, S C G a soluble
subgroup of derived length £ and G a |G| -saturated elementary extension of G.

(1) There is a nice subgroup H C G with S C H such that H is soluble of derived
length £. HN G is S-invariant and normalised by N (S).

(2) There is a definable subset X C G with S C X such that X N G is a subgroup
of G and X generates a soluble subgroup of G of derived length .

(3) If S is in addition normal in G, there is a normal, soluble of derived length ¢,
definable subgroup H C G with S C H.

NIP groups include finite groups, abelian groups in the pure language of groups
(W. Szmielew [26]). abelian ordered groups (Y. Gurevich and P. Schmitt [11]).
groups definable in a stable structure (e.g. linear algebraic groups over separa-
bly closed fields. C. Wood [31]) and groups definable in an o-minimal structure
(e.g. linear algebraic groups over the field of real numbers). These are trivial ones for
most of the considerations of this paper, as both stable and o-minimal groups satisfy
strong descending chain conditions, either on uniformly definable subgroups [5] or
on all definable subgroups [21]: in such a group G, for every A C G, the centraliser
Cg(A) and the A-core ﬂaeA a~"Ha of a definable subgroup H C G are definable,

and these properties remain true in quotients of G by normal definable subgroups.

Other examples include linear algebraic groups over a field & that does not have
the independence property, and more generally groups interpretable therein, e.g.
quotients H,/H, where H, <1 H; are definable subgroups (not necessarily Zariski-
closed) of the general linear group GL,(k) in a field structure (k, L) where L
is an expansion of the field language such that the structure (k, L) is NIP. This
holds in particular with k equal to (a finite algebraic extension of) the pure
field Q, of p-adic numbers (L. Matthews [17], see also [4]) and more gener-
ally to a Henselian valued field of characteristic 0 whose residue field is NIP

(F. Delon [8]). Other examples of NIP fields: the valued field U@] F;lg ((£'7m))

of Puisieux series over Ff,’,lg and more generally any valued field of characteris-
tic p > 0 with perfect NIP residue field, with p-divisible value group and with no
proper algebraic valuated extension having ramification index 1 and residue degree 1
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(I. Kaplan, T. Scanlon and F. Wagner [14]). In a linear algebraic group G(k) over
a field k, every descending chain of Zariski-closed subgroups has finite length. In
particular, for any subset 4 C G (k). the centraliser C;)(A) is definable. and the
A-core of a Zariski-closed subgroup H C G (k) is Zariski-closed (hence definable).
but the 4-core of a definable subgroup may not be definable.

NIP groups also include general linear groups GL,(R) over a NIP ring R, which
may be a domain (such as valuation rings of the valued fields cited above) or not

(such as any nonprincipal ultraproduct Hu 7./ p"Z for a fixed prime number p).

Two examples of a less algebraic nature. The universal covering group G of
a definably connected group G that is interpretable in an o-minimal expansion
M of the field R is a NIP group: G is interpretable in the two sorted structure
((m1(G).+). M) (E. Hrushovski et al. [13]) hence NIP (A. Conversano and A. Pillay
[6]). An ultraproduct of groups that are uniformly interpretable in a NIP structure
is NIP (D. Macpherson and K. Tent [19]).

§1. Preliminaries on the independence property. Before discussing the particular
case of groups, we consider an arbitrary first-order language L. a complete theory 7',
one of itsmodels M, and a subset 4 C M. Let X and j be disjoint tuples of variables
of respective length p > 1 and ¢ > 1. Given a formula ¢(X) and a partial type p(%)
with parameters in M, i.e. a set of formulas consistent with the L U M -theory of
M. we write ¢(A) for the subset {(xi...., xp) € AP : ¢(x1.....x,) holdsin M}

of M? and p(A) for the intersection ﬂ¢e/: o(A).

1.1. Shattering formulas. Let o (X, 7) bea formulain p+-¢ variables with possible
parameters in M. Given a nonzero n € w. we say that the formula (. 7) shatters

(M | pla;. b)) < i€l

In other words, ¢(X.7) shatters n in T if there is a finite subset 4 C M? with
n elements whose subsets are all of the form 4 N ¢(M.b) for some b varying
in M?. As shattering n is a first order property, it does not depend on the model
M of T chosen. We call Vapnik—Chervonenkis dimension of (%, 7) in T, sometimes
omitting to specify 7" when the ambient theory is obvious, the maximal n €
that is shattered by (%, 7) in T if such a number exists, or oo otherwise. We write
it VC(yp). Note that V'C(p) equals VC(—y). In these definitions, the tuples of
variables X and 7 do not play the same role. We write * (X, 7) for the dual formula
of ¢(X.7), obtained by interchanging the role of X and j. We say that (%, ) has
the independence property in T, if it' has infinite VC-dimension in T". The structure
M or its theory T do not have the independence property (i.e. are NIP) if no formula
has the independence property in 7', i.e. if every formula has a finite VC-dimension.

The relation between Shelah’s independence property in [24] and Vapnik—
Chervonenkis’ dimension in [27] is pointed out in [15]. We refer to [24] and [2]
for more about NIP structures.

! According to Shelah’s definition in [24. Definition 4.2]. ¢ (%. 7) has the independence property if the
dual formula ¢* (¥, 7) has infinite VC-dimension. The two statements are equivalent as VC(p) < n
implies V'C (¢*) < 2" by [22, Lemme 12.16].
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1.2. Shattering types. We extend the previous definitions to partial types. Let 4
and u be two cardinal numbers, with 4 < A", If z(%, ) is a partial type in p + ¢
variables, we say that n(X.7) shatters /. up to u in T if there is an elementary
extension M of M, a subset A C M? with |4| = A such that for every B C A4
with |B| < u there is 5 € M4 such that B = A4 N (M. b). Equivalently, there is
an eleme_ntary extension M of M, a family {a; : i < A} of elements of M?, and a
family {b, : J C A, and |J| < u} of elements of M? such that

M = 7(a;.by)) < i€l
We say that 7(%, ) co-shatters 4 in T up to u if there is an elementary extension M

of M and families {@ : i < A} and {b; : J C /. and |J| < u} whose elements lie
respectively in M? and MY, such that
(M = n(a;.by)) < i¢J

or equivalently if there is 4 C M” of cardinal A such that for all B C 4 with
|4\ B| < uthereis b € M’ with B = A Nn(M.b).

If z(%. ) shatters A up to A", then it shatters and co-shatters A up to every u < A™.
In this case, we simply say that (%, j) shatters A.

If a formula ¢(X, 7) shatters every n € w in T, by the Compactness Theorem,
(%, 7) shatters /4 for every cardinal number A. If a partial type n(X, y) shatters
every n € w in T, by the Compactness Theorem, for every n € w. there is a finite

conjunction of formulas in 7(%, 7) that has VC-dimension at least n. However, it is
possible that 7" be NIP.

ExaMpLE 1.1 (The Cantor ternary set in R). The Cantor ternary set € is the
intersection of the closed sets C, defined by

Cy 2 C,
Co=[0.1] and Cpo=tU (§+?).

¢ consists of the elements of [0, 1] having at least one ternary representation whose
digits belong to {0, 2}. The partial type {x +yeC,:ne a)} shatters w. For every
i € w and subset J C w, we define

11 1 2
—<3+3—)3— and by =3 -

jeJ
so that we have ) { 5
Cl,'-l—bJ:m-l—m—FZm.
jeJ
On the one hand, if i € w \ J, then a; + b; has occurrences of 1 in every ternary
representation. On the other hand, if i € J, then

2 2
ai+by = 32i+1 + Z 32j12°
JEIN{i}

ExaMPLE 1.2 (The Cantor ternary set in Q3). The 3-adic ternary Cantor set €3
is the intersection of the closed subsets C,, C Q3 defined by

Co=72Z; and C,.;=3C,U (2 + 3Cn).



6 CEDRIC MILLIET

&3 consists of the 3-adic integers whose canonical expansion have coefficients
in {0,2} (M. Lapidus and H. Lu [16]). The ring of 3-adic integers is defined by
the formula (3y)(y? = 1 + 3x?) and €3 is a type definable subset of Q3. The type
X + y € €3 shatters @ in Q3. which can be seen taking ¢; = 3% 4 3%*! and

by = Z]EJ 2-3%  Note that the field Q3 does not have the independence property
by [17] (see also [4. Section 4.2]).

Given a cardinal /, here is an example of a language L;, an L;-structure M, and
partial type 7;(x, y) that shatters 4 in M. Let I' be an ordered abelian divisible
group containing a copy of 4. Consider the Hahn field Q3((I')) of generalised
power series with 3-adic coefficients. Consider the structure (Qs3((T')).+.0. P} :
i € A, n € w) where P} is a unary predicate interpreting the subgroup of Q3((T"))

whose elements are of the form Z o a;t' with a, € 3"Zs.Inthislanguage. Q3((I'))

is an abelian structure in the sense of E. Fisher (see [10]. or [29, Example 0.3.1]).
Any definable subset of the Cartesian product Q3((I'))” is a Boolean combination
of cosets of acl(())-definable subgroups of Q3((I"))" by [30] (see also [29, Theorem
4.2.8]): the structure (Q3((I')). +.0. Py : u € A. n € w) is stable.

Let Q% denote the partial type defined by

¢ = ﬂ ﬂ Cf, where Ci=Py and C}  =3Cru(2+3C)).
HELNE®
The realisations of ¢% in Q;((I')) are the elements of the form Z'e[ a;t" where
1

a, € € for each cardinal number x < A belonging to /. The families a; = 4¢" and
by = Z o 2t/ witness that the type x + y € @4 shatters 4 in Q3((T")).
j

ExaMPLE 1.3 (A type that shatters every n € w, butnotw up to4). In (R, 4+, <),
here is a sequence of definable subsets 4, C [0, 1] such that the partial type n(x. y) =
{x —y € 4, : n € w} shatters every n € w but does not shatter w up to 4. Define
forall n € w, a definable subset B, C [n,n + 1] of the form

B, =ln,n+ 1[\{cn1,....cnm} Wwith n<c,;1 <---<cpm<n+1

such that, foralli € {I...., n}and J C {1,...,n} there are a,; € Rand b,; € R

such that (a,; — b,s) € Jn.n + 1[ and
(ani —buy) € By < i€ J

We put C = {¢;; : i.j € w}. and we may build each B, so that the map mapping
a 2 element subset {x, y} of C to |x — y| has finite (unbounded) fibres (using a
Q-basis of R for instance). We put for all n € w.

Ap =]—00.0]UByUB U---UB,U[n+1,+00].
It follows that, for every n € w and finite J C w,
(R n(ani.buy)) < i€l

so 7(x, y) shatters every n € w. If X is an infinite set shattered by z(x. y), then
there are a real number ¢ and infinitely many 3 elements subsets ¥ of X with the
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property that |x — y| = £ for some x and y in Y. This shows that z(x, y) does not
shatter w up to 4.

1.3. Nice sets. The previous examples show that shattering types can occur in a
NIP theory. We go on by giving one elementary condition under which a shattering
type yields a formula with the independence property.

A partial type p(X) with parameters in M is uniform if there is a formula (%, j)
and a subset 4 C M7 such that

p(x)={p(x.a):ac 4}
A family § of subsets of M? is uniformly definable if there is a uniform p-type p(X).
such that
F={s(M):¢cp}.
§ is a filter if for every X and Y in §, there is Z in § such that Z C X N Y. We

say that p(X) is a filter if the family {¢(M) : ¢ € p} is a filter, in other words if for
every ¢; and ¢, in p, there exists ¢ in p such that

p EVE((F) = ¢1(X) A ¢a(5)).

DEFINITION 1.4 (nice subset). A partial type p(%) with parameters in M is nice
if p(x) is a uniform filter. A subset X C M? is nice (in M) if there is a nice partial
type p(xX) such that X = p(M).

DEFINITION 1.5 (externally definable subset). A subset X C M" is externally
definable if there is an elementary extension M of M and a definable subset X C M"
such that X = X N M". Equivalently, there is a formula ¢ (X, j) and a tuple ¢ in M
such that

X={xeM":MEop(x.0)}.

LEmMMA 1.6. A nice set is externally definable.

PrOOF. Let X = p(M) with p(%) = {p(X.a) : @ € A} a uniform filter. The
partial type

n(7) = {¢(b.7).Vx(p(%.7) = ¢(%.0)) : b € X.a € 4)}
is finitely satisfiable in 4. It follows that X = (M. a) for any realisation a of 7.

COROLLARY 1.7. [If there is a nice partial type that shatters every natural number n
in T, then T has the independence property.

ProOF. If 7(X. 7) = {¢(X.7.a) : @ € A} is a nice partial type that shatters every
n, there are an elementary extension M; of M and tuples {a} : i < n}, {b} :J C n}
in M; such that

M, Er(al.a))) < ieJ
for all n. By Lemma 1.6, there are an elementary extension M, of M; and
a € M, such that z7(M;) = ¢(M;.a). so ¢(X. 7.a) has the independence property
in Mz. =

REMaRrKk 1.8. In Corollary 1.7, one can neither drop the assumption that the
partial type is uniformly definable, nor drop the assumption that the partial type is
a filter: the type of Example 1.3 is equivalent to a uniform type, to a filter also, but
not to a uniform filter.
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COROLLARY 1.9. Let M be a NIP L-structure, with = being the only relation
symbol in L. Let N C M and E C N? be nice subsets (in M) such that N is a
substructure of M and E is an equivalence relation on N that preserves L. Then N/ E
is NIP when equipped with its natural L-structure.

PrOOF. Let ¢ be a constant symbol and f an n-ary function symbol. By E
preserving the language. we mean that for every (ay.....a,) in N, whenever a; ; =
b;r holds forevery i € {1,...,n} one has

(fN(al,...,an))E = (fN(bl,...,bn))E.
This way, the quotient space N/E has a natural L-structure defined by putting
MNE=eNp and fYE(arg. ... ang) = (fN(al,...,an))E.

Since nice sets are externally definable, by a theorem of S. Shelah [25], the structure
(M, LM N, E) in the language L expanded by predicates for N and E is NIP. The
domain and functions of the L-structure N/E are interpretable in (M, LM _N.E),
thus N/E is also NIP.

As we shall only use this result in Theorem 4.4 for a quantifier-free formula
xy = yx, we give a direct proof for that particular case: by induction on the
complexity of an L-term ¢(x;,....x,), forany (a.....a,) € N" one has

MNE(ayg. .. ang) = (ZN(al,...,an))E.

Let E = o(M.b) and N = v(M.¢) for some L-formulas ¢(x.y. %), v(x,Z) and
tuples b.¢ in M. For any quantifier-free L U {N, E }-formula ¢(x), one defines the
L-formula ¢ (x) by replacing any atomic subformula #(x) = u(X) by ¢(z.u.b) A
v(x1.¢) A---Av(x,.¢). Forany (a,....a,) € N". one has

N/E = ¢(aig. ..., ang) = ME ¢p(ay.....ay).

It follows that, if the quantifier-free formula y (¥, 7) has the independence property
in M/E, then the formula y £ (X, 7) has the independence property in M. =

§2. Preliminaries on NIP groups. We now consider a NIP L-structure M and a
group G definable in M.

2.1. Descending chain conditions.

BALDWIN-SAXL CHAIN CONDITION 2.1 (see [5] or [23]). Let {H; : i € I} be a
Samily of uniformly definable subgroups of G. There is n € w such that for all finite
subsets J C I, there exists a finite subset J, C J of size at most n such that

(Hi=()H,.
JET jeJ
We shall need the following stronger version. Given a subset X C G and n € .
we write X0 = {1} and X" for the set of products x;x; - - - x, of n elements of X,
and X *” for the Cartesian product X x --- x X. We call X symmetricif X' = X
and 1 € X. Given a pure set Y, when there is no ambiguity, we go on writing Y”
for the Cartesian product ¥ x --- x Y.
LemMA 2.2 (a Baldwin Saxl chain condition for subsets). Let X be a family of

subsets of G. For every X € X. let X'/* C G be definable with (X1/3)3 C X. Let
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{X'/3: X € x} beuniformly definable by a formula p(x. 7) with VC (¢*(x. 7)) = n.
For every X € %, let X'*" C G be symmetric (not necessarily definable) such that
(X1/3”)n C X3, Then. for every X\..... X1 € X. thereis j € {1.....n+ 1} with

1/3 1/3 1/3 1/3
Xtnen XX 00X XN 0 X
Proor. Otherwise, there are by,...,b,+; in G and Xj...., X, in X such that
forall jin {1,....n+ 1}, one has
bie (X0 nx 0\ X (1)

LetJ C {I,.... n + 1} have elements j; < --- < j; and let b, be the ordered

productbh; by, ---b; . Ifj € {1..... n+1}\J.thenb; € (X;ﬂ")nandsobj € X_}/s.

On the other hand, if J has elements
< <jim1<Jj<jiz1 < < Jk.
thenb; ¢ X ;/ 3, for otherwise, we would have
by = (b3 b by (b7 bl
and thus b; € X;. a contradiction with (1). This shows that V'C (¢*(x. 7)) > n+1,
contradicting the hypothesis. -

2.2. Nice subgroups. Let H C G be a subgroup. H is a type definable subgroup
of G if there is a partial type 7(x) with parameters in G such that H = n(G) and,
for any elementary extension G of G, the set 7(G) is a subgroup of G. We call = a
defining type for H.

DEFINITION 2.3 (nice subgroup). We say that H is a nice subgroup of G if H is a
type definable subgroup of G having a defining type z(x) = {¢(x.a) : @ € A} that
is nice in G and such that ¢ (G, @) is symmetric for all @ in A.

By Lemma 1.6, a nice subgroup is externally definable.

ExamPLE 2.4. A definable subgroup H C G is nice. By the Baldwin Saxl chain
condition, any intersection of uniformly definable subgroups of G is nice. In partic-

ular. for any subset 4 C G and subgroup 2| C Aut(G), the subgroups ﬂ o H?,
a
Cg(A), and ﬂUEQI H? are nice.

COUNTEREXAMPLE 2.5 (A centraliser that is not nice). In an infinite extraspecial
3-group K, which is supersimple of rank 1 (see [18]) and whose conjugacy classes are
all finite, choose (@, ),>1 such that the chain of centralisers Cx (a;) D Ck(ay.a2) D

Ck(ay.ay.a3) D --- is strictly decreasing. The partial type ﬂ . Ck(a,) is not nice
nz

as [K : Cg(a,)] < 3 for every n. Nor is it equivalent to a nice partial type, for

otherwise, by the Compactness theorem, one could find a definable infinite subset

X C K with infinitely many pairwise disjoint left translates, contradicting the fact
that K has rank 1.

ExaMPLE 2.6. In an w-saturated elementary extension PR of the field R, the
subgroup of infinitesimal numbers is nicely defined in the language (+. <). In the
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language of fields, the intersection of the Euclidian balls {x € " : ||x|> < 1/k }isa
nice subgroup of RR”. It is also the intersection of the family ) of half hyperplanes of
equations ajxy + - - -+ dy X, < @,y Where ay, . ... a, range over Q with a,, 1| > 0.
In GL,(R). considered as a group interpretable in the ring M, (%), the subgroup
of elements that are infinitesimally close to 1 is nice, being the intersection of the
neighbourhoods {1 + x : ||x|[> < 1/k}.

ExaMPLE 2.7. Let 3, be an w-saturated elementary extension of the ring Z,
of p-adics integers. The infinitesimal numbers form a nice subgroup of 3,. defined
by the intersection of the subgroups p*3,. In GL,(3,). as a group interpretable in
the ring M,,(3,). the intersection of the congruence subgroups 1 + p*M,(3,) is a
nice subgroup.

2.3. Normaliser. For any two subgroups H, K C G, we write

H* = (| H*
gekK

for the K-core of H. When G is stable, if H is definable, then H K is definable, and
hence so is Ng (H*). When G is NIP, the situation is far less straightforward. H*
is merely K-type definable and its normaliser has no obvious reason to be even type
definable.

LEMMA 2.8. Let H C G be a nice subgroup with defining type {¢(x. b):be B}
and let n = VC (¢*(x.7)). For any subset A C G. the subgroup H* C G is nice,

with defining type { /\1<'< o(x“.b):beB. ay.....a,¢c A}.
<ign

PrOOF. Let § be the family of uniformly definable sets {¢(G.b) : b € B}.
As 7(G)* C n(G) for every elementary extension G of G. by the Compactness
Theorem, for every element X of §, there are finitely many Xi,..., X,, in § such
that (X; N---N X,,)? C X. As § is a filter, there is an element of §, which we write
X'/3, such that X'/3 ¢ X; N ---N X,,. Similarly, for every nonzero n € w, there is
X1/3 ¢ ¥ such that

(x'Bmyn < x5 ¢ x.

Let y(x: 7. yis1) be the formula o (x7¢1, 5) and n = VC (w*(x: J. yr41)) where
7 = (y1..... k). By Lemma 2.2 applied to the family & = {X“ : a € 4. X € §},
for every Xi. ..., X1 In &, there are Y7,..., Y, in & such that

Yin---n¥Y,cxin---NX,.

It follows that the family {X; N---N X, : X; € B} is a filter. a

We adopt the following conventions for writing down formulas. For every nonzero
k € w and formulas o (x. i), ¢(x. 7). we write

<p(x,ﬁ)k for  Fxy...3xp(@(xr @) A Ap(xp. i) AX = X1X2+ - Xk ).
o(x.0)° for Fyle(y.9)Ax=y7).
o(x. i) Cx ¢p(x.0) for Vx(p(x.i) — ¢(x.0)).

LEMMA 2.9. Let G be k-saturated with k > Wy. Let A, N C G two subgroups with
|A| < k and |[N| < k. Let H C G be a nice subgroup with a countable defining type
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{(p(x,g) bhe B}. Let n = VC(¢*(x.7)). Assume that A C H and AN C A. For
anyl_) € Band ay,....a, in G such that A C ﬂ1< (G, b)“’ there are a nice
subgroup K C G with countable defining type {(p x,C):C€ C}, some ¢ € C and
ai,...,a, in G such that, for every g € N,

(ﬂ(p(G,c')o")g Cmcp(G,g)”" and ACKNK*N---NK*.
i=1

PrOOF. Let (b;);c., be an enumeration of B such that ¢(G. b;11)> C (G.b;) for
all i € . We consider the partial type over 4
P((Fi)ico) = {o(x. i) Coo(x. 7). ola. 7)) icw, ae A}

Note that for all m € w, the sequence (Bt )ico satisfies p. We consider the partial
type n(xy..... Xn. Jo) with parametersin A U N U {ay...., ay. b}, defined by

n

{/\‘P(x’y_O)x" s (N elx.0)®) /\ a.30) Ap(a.7o): g €N. a €A}
= =1

i=1

By Lemma 2.8, the type n(xj.....x,.Jo) is finitely satisfiable in (N)*" x B. It
follows that 7(xy.....x,. o) U p((y,),ea,) is satisfiable. As G is k-saturated. 7 U p
has a realisation (a. . ... ay. (¢/)ico) in G. Weput C = {¢; : i € w}. +

THEOREM 2.10 (normalising a nice envelope). Let G be k-saturated with k > ¥
and H C G a nice subgroup defined by a partial type of size < k. Let A C H and
N4 C Ng(A) be any subgroups with |A| < k and |N 4| < k. There are nice subgroups
K. N C G defined by countable partial types such that

ACKCH and NACNKCNg(K).

ProOF. Let {¢(x.h) : b € B} be a defining type for H. Note that H is the
intersection of nice subgroups H; C G having a countable defining type. We fix
some f € B. There is some index i and some b € B such that

H; C p(G.b) C ¢(G.b)* C p(G. ).

We apply the previous lemma with ¢; = - -+ = a, = 1 and put
n
=p(G.p) and X =()e(G.&)"

One has Xlg C X forany g € N4 and X1 X] C Xj. Let § be an element of C such
that

n
a2
(HSO(G»V) ’) C Xi.
i=1
and put Y, = mn ©(G.7)%. As A C Y1, and as the countable type {cp X,C)
1

ceC } provided by Lemma 2.9 defines a nice subgroup H; C G with 4 C Hi,
one can apply Lemma 2.9 again to H; and Y;. By induction, one finds an infinite
decreasing chain of definable subsets Xy D X7 D X, D -+ of G such that for every
i € wand g € Ny, one has

X,,CX. ACX, and X3, CX.
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As n depends on ¢(x, y) only, the family {X,- 1ie a)} is uniformly defined by the
formula

p(xynooen) =\ e ).

1<i<n

where yi. ..., yus1 are replaced by parameters. By compactness, there is a family

(vi), co Of uniformly definable subsets of G defined by w (X, ¥1..... Yus1). such that

for all rational numbers p < ¢, allg € N, and all § € B. one has
YECY, ACY,Ce(G.f). and Y,Y,C Y,

We put ¥, = w(G.,b,) for some tuple b,. By compactness and Ramsey’s Theorem,

we may assume that the sequence (b)) ,cq is indiscernible over the empty set. We
define
K=()Y, and Ny= () {xeG:YicY,and¥; cY,}.

PEQ (p.g)eQ?
P<q

It is straightforward that K is a nice subgroup, that K C H, that Ny C Nx C
Ng(K) and that Nk is symmetric. For any rational numbers p < r < ¢, one has

({xeG:Y;’C Y, }n{xeG:Y}C Yq})zc{xeG:Y;'C Y.}
It follows that N is a subgroup of G. To finish the proof of Theorem 2.10, we only
need to show that N is a nice subgroup. For any p < ¢, we define (p, ¢) putting
(p.q)={x€G:Y CYand Y} CY,}.
and forany ro < r; < --- < rp, we define (rg,...,r,) by
(ros o eotm) = (ro, 1) NV ra) O N (Pt P ) -

Note that (rg....,r,)™ C (ro.rm). Let ¢(x, ) be the formula defining uniformly
the sets (p.¢). and let m = VC (¢*(x. 1) A ¢*(x.72) A ¢*(x. 73)). Let rg < 1 <
-+ < ryme1 be an ordered sequence of 2m + 2 rational numbers. By Lemma 2.2,
there is i < 2m such that

(ro. k)3 O O (i) PO (i i) O 0 (P o)
C (ro,r1) N {(ra.13) N0 (Fams Famr1)-
To simplify notations, let us assume that i = 2. The above equation yields in

particular

(ro, 1) 3 A (g )Y O 0 (Pas P )V C (2 13)

As the sequence (b,) ,eq is indiscernible, for any rational numbers py < p; < -+ <

ii+1 ii+1 ii+l i,i+1
Pams1.and any p; = pg'T < pi't <o < py T < pyT = pig1. one has

(P! PR N (PR P N N (g2 ™) C (pa. pa).

In particular, by density of Q. any finite intersection of subsets of the form (p. ¢)
for p < g contains an intersection of 3m? sets of the same form, so that if § denotes
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the family {(p,q) p< q}, then the family {ﬂ&m 2 8m C Fand [§n| < 3m2} is
a uniform filter defining Ng as well. -

REMARK 2.11. If H is the intersection of uniformly definable groups, then K is
the intersection of uniformly definable subgroups, but we do not see any obvious
reason why Nk would be the intersection of uniformly definable subgroups.

With a similar proof, we get:

THEOREM 2.12. Let G be k-saturated with k > Ny and H C G a nice subgroup
defined by a partial type of size < k. Let A C H and N4 C Ng(A) two subgroups
that are the reunion of two families of cardinality < k of uniformly definable subsets
of G. There are nice subgroups K, Nx C G defined by countable types such that

ACKCH and N4 C Nx C Ng(K).

§3. External and discernible subgroups. Let G be an infinite group. H = ¢(G.¢)
an externally definable subgroup of G and G a fixed |G| -saturated elementary
extension of G. Every b realising the p*-type of ¢ over G satisfies p(G.¢) = ¢(G.b).
so H is externally definable with parameters in G. The group H need not be the
trace on G of a definable subgroup of G though: consider the example of a convex
proper additive subgroup of an elementary extension of R.

DEFINITION 3.1 (external subgroup). A subgroup H C G is external if there is a
definable subgroup H C G such that H = HN G. If the elements of H satisfy a set
P of quantifier-free formulas with parameters in G, we say that H is external as a
P-group.

DEFINITION 3.2 (discernible subgroup). A subgroup H C G is discernible if there
is an elementary extension G of G and a nice subgroup H C Gsuchthat H = HNG.
If the elements of H satisfy a set P of quantifier-free formulas with parameters in G,
we say that H is discernible as a P-group.

Lemma 3.3. A discernible subgroup of G is externally definable.

Proor. Let H = HN G be discernible. By Lemma 1.6, H is externally definable,
so H also. -

LemMma 3.4. A discernible subgroup H = H N G is the trace over G of a nice
subgroup K C H defined by a countable partial type.

ProoOF. Let 7(x) = {@(x.h) : b € B} be a defining type for H. Let G| be a
|G| -saturated elementary extension of G. Let b in B. As 7(G1)? C ¢(Gy.b). by the

Compactness Theorem, there are by, ..., b, in B such that
(SO(GLEI) N---N @(Glagn))z C ¢(Gy.b).
As (Gy) is nice, there is ¢ in B such that

¢(G1.¢) C p(Gr.b1) N Np(Gi.by).
Thus, the following partial type p(7o. 1. . ... Pn....) over H UB

{0x. 701 Co ol 7). @(x.50) Co 9(x.b). @(h 7i) i €. he H b e B}
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is finitely satisfiable in B, hence realised by some sequence (2. 4. ... ) of elements
of G| = G. Putting n(x) = {¢(x.a;) :i € w}.onehas H = 7n(G;) N G. -

If H is discernible as a P-subgroup of G and defined by the countable partial type
n(x) = {o(x.a;) : i € w}. then replacing (a;);c., by parameters (b;);c,, sharing
the same type over G changes neither H nor the first order consequences (with
parameters in G) of 7(x). In particular, H is the trace on G of a nice subgroup
H C G whose elements satisfy P.

An external subgroup of G is a discernible subgroup of G. The subgroup of
infinitesimal numbers of an elementary extension 98 of R is a discernible subgroup,
an externally definable subset, but not an external subgroup of 9.

LemMa 3.5. Let H C G be the intersection of a family of uniformly external
subgroups of G with defining formula o (x. 7). Then H is an external subgroup of G
with defining formula o(x, 1) A -+ A p(x. 7,).

Proor. By the Baldwin Saxl condition, H is a discernible subgroup of G. We can
thus apply the proof of Lemma 3.3, adding to the partial type 7(7) a formula y ()
saying that ¢(x, 7) defines a subgroup of G. -

LEmMMA 3.6. If G is stable, a discernible subgroup H C G is definable. If H is
the trace over G of a group H defined by the nice type {¢(x.a) : a € A}, there are
ai,....ayin G such that (G.ay) N---N(G,a,) is a subgroup of H of finite index.

Proor. As G does not have the order property, there is a in A such that H =
©(G.a). Let w(y) be a formula stating that (G, y) is a subgroup of G. The p* A -
type of a over G is definable by a positive Boolean combination of formulas of the
form p(x.g) A w(g) for g in G by [12, Corollary 2.8], hence covered by a finite
union of subgroups of G. By Neumann’s Lemma [20]. one of these subgroups must
have finite index in H. -

TueoreM 3.7 (finding external subgroups). Let G a NIP group, G a |G|*-
saturated elementary extension of G and H = HN G an external subgroup of G.

(1) Thereis n € w such that for every A C G, there are ay, ... .a, in G such that
Cg(A4) = Cg(ay.....a,).
(2) There is an abelian definable subgroup Z. C G such that,
ZH)=7ZnG.
(3) Forevery n € w, there is a definable subgroup K of G such that
H=KNG and Z,H)=2Z7Z,K)NG.
(4) There is n € w such that for every A C G, there are ay, ... .a, in G such that
H*=H"N---NnH"NG.
PRrROOF.

(1) By Baldwin SaxI’s chain condition, Cg(A4) is defined by a nice partial type
consisting of uniformly definable subgroups. It is thus an external subgroup
by Lemma 3.5.

(2) By the Baldwin Saxl condition, there is n € w such that the centraliser of
any finite subset of G is the centraliser of n elements. By the Compactness
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theorem and the saturation assumption, there is an n-tuple h in G such that
Z(H) c Cu(h) c Cy(H). It follows that Z(Cy(h)) contains Z(H ), hence
Z(H) =GN Z(Cx(h)).

(3) The following Claim is inspired by [7, Lemma 2.1]:

Cram 1. Let A,B C G be two subgroups and D C G a definable subgroup
normalised by both A and B such that [A, B] C D. There are two definable subgroups
A, B C G containing A and B respectively such that [A,B] C D.

Proor ofF CLamv 1. For any subset C C G, we define the subgroups
A(C).B(C) c Gby

A(C)= (] {xeNsD):[x.c]CD}.

ceC
[4.clCD

B(C)= () {yeNa):[c.y]cD}.
[chE]gD

and claim that there is a finite C C G such that [A(AUBUC),B(AUBUC)] C D.
Otherwise, by induction, one could build two sequences (a,),ce and (b,)nce such
that foreveryn € w, a, € A(AUB U {ay. by : k <n})and b, € B(AUB U {ay, by :
k < n})but[ay,, b,] ¢ D.It would follow that [a;. b;] € Dif and onlyifi # j. so that
the sequence (Cg(a,D)),_, would not satisfy the Baldwin Saxl chain condition
since for every j < n,

bje( N CG(a,-D))\( N CG(a,-D)).

1<i<n 1<ign
i#]

ne

By the Compactness Theorem, there is a finite tuple ¢ such that [A(¢), B(¢)] C D.
We consider A = A(¢) and B = B(¢). =

We prove (3) by induction on 7. For n = 0, there is nothing to show. If there is a
definable subgroup H C G such that H = HN G and Z,(H) = Z,(H) N G,
as [Z,.1(H).H] Cc Z,(H), by Claim 1, there are two definable subgroups
Z,.1.H,.1 C G containing Z,,(H) and H respectively such that [Z,.1.H,.1] C
Z,(H). Replacing H,.; by H,.; "H and Z,.| by Z,; N H,.|. we may assume
that H,,; c Hand Z,,; C H, . It follows that [Z,,1.H, 1] C Z,(H,1). so that
Z,+1(H,+1) contains Z,1. hence Z,.1(H). One thus has

H=H,,1NG and Zy1(H) = Zy1(Hpy) NG,

(4) Follows from Baldwin SaxI’s chain condition and Lemma 3.5. =

TueoreM 3.8 (finding discernible subgroups). Let G be a NIP group, G a |G|*-
saturated, |G |*-homogeneous elementary extension of G and H = HNG a discernible
subgroup of G

(1) There are n € w and a nice subgroup K C G such that for every A C G, there
areay,....a, in G with

H=KNnG and H*=K"n.-..-NnK*NG.
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(2) There are n € w and a nice subgroup K C G such that for every A C G and
A C Aut(G/A), there are a1, . .. .6, in Aut(G/A) with

H=KNG and [)H°=K"nN---NK"NG.
ageA
(3) There are nice subgroups K C H and N C Ng(K) of G such that
H=KNG and Ng(H)=NNG.

PROOF.
(1) Let {¢(x.b) : b € B} be a defining type for Hand n = VC(¢*(x. 7)). By
Lemma 2.8, the type 74(y1... .. Vn. (Xi)icw) defined by

{ox5a) Coplv®). o(x.5) Copl(x). o(h %), N k%),

1<j<n
( /\ (. %)) Cxp(x.b) :he H ke H'. ac A. beB, i ew}
1<j<sn
is finitely satisfiable in 4" x B®. Let (ay.....a,.(¢;)icy) be a realisation of

74 in G. The type v(x) = {¢(x.¢;) : i € w} is nice, and one has
H=v(G)NG and HA =v(G)* N---Nv(G)* NG.

By another compactness argument, considering the union of the types
T4 (yl,A, e Vnd, (x,»)iea,) when A4 ranges among all subsets of G, one can
find a group v(G) that does not depend on the set A.

(2) By Lemma 3.4, we may change H and assume that it is defined by a count-
able type {(p(x, b)) :i€ a)} Without loss of generality, we may assume

©(G.b;;1)?> C @(G.b;) for every i € w. Let A be a subset of Aut(G/A)
containing exactly one extension of every o € 2. Let n = VC (¢*(x. 7)). let
T4 ((Fo.p. PLp- - - - Fup)pew) bea partial type over 4 stating that the sequences
(Pk.p) pew have the same type over A for every k € {0.....n} and let

{SO(XJ_/LO) A+ Ap(x, Fno) Cx p(x.ab;). @k, F10) A=+ Ak, Fno).
e (x.50,) Cx p(x.b1). 0(x. Fop11)° Cx @(x. o).
olhyo,) icw pew heH ke HY, aei(}.

We claim that py is ﬁnitgly satisfiable. For every m > 1, every iy, ..., im €W
and every ay,...,6, in 2, putting i = max{i,...,i,} + 1, one has

@(G.a1b) N Np(G.aub;) Cp(G.aib;) N Np(G.ay,b;,).
By Lemma 2.2, there are j > i and ji, ..., j, € {i1.....in} With

0(G.a;b;))N--Np(G.a;b;) Cp(G.aib)N - Nep(G.a,b;).
Putting (¢ ... .. énp) = (6;bj1p.....0, b, ,) forevery p. one has

(Ch0.ChtseChp) = O'jk(l_)j,l_)j+1,...,l_)j+p) forevery k € {1,....n}.
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It follows that pg is consistent. Let ((€g . €1p.....E.p)pcw) be a realisation
of py. As the sequences (¢x,),c» have the same type over 4 for every
k € {0,....n}, there are ¢1....,6, in Aut(G/A) such that 64 (S ,) e =

H=KnGand|) o H7 =K' 0---NK” N G. Considering the union of

the types pg ((}_}()417, Pips-.. 9_)7}1,])42[)]76(0) when 4 and 2 vary, one can find a
group K that depends neither on 4 nor on .

(3) By Lemma 3.4, we may assume that H is defined by a countable type. By
Theorem 2.10 applied in G to H C H and Ng(H), there are two nice
subgroups K. N C G such that H € K € Hand Ng(H) C N C Ng(K). One
thushas H = KN G and Ng(H) =NNG. -

84. Envelopes in a definable group. Let us recall the following results from [25]
and [7].
THEOREM 4.1. Let € be a monster model of a NIP theory and G a group definable
in¢€.
(1) (S. Shelah) If G has an infinite abelian subgroup A, then it has a definable
abelian subgroup that contains infinitely many elements of A.
(2) (R. de Aldama) If G has a nilpotent subgroup N of class n with |[N| < |€
then it has a definable nilpotent subgroup of class n that contains N .
(3) (R. de Aldama) If G has a normal soluble subgroup S of derived length £
with |S| < ||, then it has a definable soluble subgroup of derived length ¢ that
contains S.

s

Throughout the section, we consider a NIP group G and G a |G|*-saturated
elementary extension.

THEOREM 4.2 (abelian envelope). Let A C G be an abelian subgroup. There is an
external subgroup H = HN G with A C H such that H is abelian, H is A-invariant
and normalised by Ng(A).

FIrRsT PROOF (Adapted from [7. Lemma 2.1]). For any subset B C G, we put

cB)= () Calb).

bEB
[b.A]=1

We claim that there is a finite subset B C G such that C (4U B) is abelian. Otherwise
we construct by induction on n two sequences (a,),>1 and (b,),>1 such that for
every n, both a, and b, belong to C(A U {ay.br : k < n}) and [a,.b,] # 1. 1t
follows that [a;,b;] = 1 if and only if i # j. so that the family (CG(a,-))i>] does not
satisfy the Baldwin—Saxl chain condition, a contradiction. As G is | 4|*-saturated,
by the Compactness Theorem, there are ci, ..., ¢, in B such that Cg(ci.....c,) is
abelian, and contains 4. By Lemma 3.5, the group

N N Caloleh).....alcd)).
gENG(A) o€Aut(G/A)

is external. =
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SECOND PROOF. Z(Cg(A)) is external (as an abelian group) by Theorem 3.7.1
and 3.7.2. It is also A-invariant and normalised by Ng (A4). -

REMARK 4.3. The simpler second proof provides an abelian envelope defined by
the formula Z(Cg(x1.. ... x,)). whereas the first proof provides an envelope defined
by the simpler formula Cg(xi...., x,).

THEOREM 4.4 (soluble envelope 1). Let S C G be a soluble subgroup of derived
length £. There is a discernible subgroup H = HN G with S C H such that H is
soluble of derived length £, H is S-invariant and normalised by N (S).

Proor. By induction on £, we show that there are two nice subgroups H.N C G
defined by countable partial types, such that H is soluble of derived length ¢,

S CH, Ng(S) CN, and H < N.

If ¢ = 0, there is nothing to show. If the result holds for every £-soluble subgroup
of G and if S is soluble of derived length £ + 1, there are nice subgroups K.M C G
defined by countable partial types, such that K is soluble of derived length £, S” C K.
Ng(S’) c Mand K <M. As Ng(S) C Ng(S’), one has Ng(S) € M. We thus have

SK/K C M/K.

As sK = Ks holds for every s in S, one has [SK, SK] € S’K C K, hence (SK)' c K,
so the group SK/K is abelian.

By Corollary 1.9, the pure group M/K is a NIP structure, so the formula yx =
xy does not have the independence property in M/K. As K and M are defined
by countable types and as G is |S|T-saturated, M/K is also |S|"-saturated. By
Theorem 4.2, there are ay,....a, in M such that CM/K(alK, ....a,K) is abelian,
and contains SK/K. It follows that the group

n
L= ﬂ{x €M:[x.a;] CK}
i=1
is nice, soluble of derived length £ + 1, and contains S. By Theorem 2.10 applied
in G to S C L and Ng(S), there are nice subgroups H.N € G with S C H C L,
Ng(S) € Nand H <1 N. This ends the induction.
Putting H = HN G, the subgroup

(| o(H)
g€ Aut(G/S)
is discernible by Theorem 3.8.2. S-invariant and normalised by N (S). -

COROLLARY 4.5 (soluble envelope 2). Let S C G be a soluble subgroup of derived
length ¢. There is an externally definable subgroup X = XN G of G such that S C X
and (X) is a soluble subgroup of G of derived length €.

Proor. By Zorn’s Lemma, we may assume that S is a maximal soluble subgroup
of G of derived length £. By Theorem 4.4, there is a formula ¢(x, y) and a subset
A C G such that ﬂ{cp(G,a) : a € A} defines a nice soluble subgroup of G

containing S. We write (G, a )" for the set of products of 7 elements of ¢ (G. a). We
say that a subset X C G is soluble of derived length £ if X satisfies all the commutator
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identities satisfied by a soluble group of derived length ¢. For a definable set X,
being soluble of derived length £ is a first order property. The partial type over S

n(x) = {p(s.x). ¢(G.x)" is soluble of derived length £ : s € S.n € w}

is finitely satisfiable in A. Let s € G be a realisation of 7 and let X = ¢(G.s). The
set X N G is a subgroup by maximality of S. -

REMARK 4.6. In an arbitrary group G, if a subset X C G satisfies all the com-
mutator identities satisfied by a nilpotent group of class n, we call X a nilpotent
subset of class n. If a X is nilpotent of class n. then X generates a nilpotent sub-
group of class n. If X is in addition definable, then it is contained in a definable
nilpotent subgroup of class n. This can be shown taking Z(Cg (X)) for n = 1.
and Z,(E,) for arbitrary n, with E, defined by induction putting Ey = G and
Ere1 = {x € Ex : [x.CEH'(X)] € CE (X)} (see [1]). However. if X is merely
soluble of derived length 2, then X may not even generate a soluble subgroup. Con-
sider for instance two generators a and b of the alternating group 4s. The set {a. b}
obviously satisfies the equation [[x. y].[z. ]| = 1. but A5 is not solvable.

THEOREM 4.7 (normal soluble envelope). Let S C G be a normal soluble subgroup
of derived length £. There is a normal, soluble of derived length £, definable subgroup
H C G such that S C H.

ProoF. Note that S need not be normal in G, so Theorem 4.1.3 does not apply.
The following proof is due to F. Wagner. We show that the result holds for every
G and every £-soluble subgroup of G by induction on £. For £ = 1, the group S is
abelian and normal. For any elementary extension G of G and sy,...,s, in S, the
conjugacy classes sC....,sS generate an abelian subgroup of G. By the Baldwin

Saxl chain condition, there is a natural number # such that the partial type over S

m(x1. ... x0) = {5 € Colx{..... x7). Co(xf.....xZ) C Cgls):s €S}

It follows that Z (CG(a?, e anG)) is normal in G, abelian, and contains S. If S is
soluble of derived length £ + 1, by induction hypothesis, S’ is contained in a normal,
soluble of derived length £. definable subgroup K of G. SK / K is a normal abelian
subgroup of G/K. As G/K is interpretable in M, it is a NIP pure group. As G/K
is |S|*-saturated, SK/K is contained in a normal abelian interpretable subgroup

H/K of G/K. and H is as desired. 4

85. Further chain conditions a /a Baldwin Saxl. We consider a NIP structure M
and a type definable group G C M. Two new difficulties appear: G need not be the
intersection of definable groups, and if H C G is a type definable normal subgroup,
the pure group G/H might have the independence property unless the formulas
defining H relatively to G are controlled.

5.1. Relatively nice subgroups. We say that G C M™ is a type definable group
in M if there is a definable map * from M?>" to M™, a partial m-type n(%) with
parameters in M such that G = (M) and, for every elementary extension M of M,
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the subset 7(M) C M” is a group for *M. We call 7 a defining type of G. Assuming
x to be definable rather than type definable is no restriction by a compactness
argument (see [22, page 170]).

By the Compactness Theorem, there exists a sequence f of definable subsets
Bi C M" that contain G, and a definable involution ~! from S to f, with the
following properties: for every ¥ € fy.onehas¥¥~! = ¥~ '%¥ = land X1 = 1% = &;
for every n € w one has ;! = B, and B,11 * Buy1 C Pu: for every Xi,.... Xy In
P, the element XX, - - - Xp« is well-defined, independently of the order of the 2" — 1
computations. We call f a base of G.

For any subset X C 8, and k < 2", we write X* for the subset of §y consisting of
products x;x; - - - x; of any k elements xi, ..., x; of X, and X >k for the Cartesian
product X x --- x X. For a set Y, when there is no ambiguity, we go on writing
Y* for the Cartesian product Y x --- x Y. A subset X C f such that 1 € X and
X' = X is called symmetric.

Throughout the section, we consider G = n(M) a type definable group in M of
base . A type definable subgroup H C G is called relatively definable in G if there
is a formula ¢(x) such that 7 U {¢} is a defining type of H. We call ¢ a defining
formula of H. More generally:

DEFINITION 5.1 (relatively nice subgroup). A type definable subgroup H C G is
relatively nice in G if there is a formula ¢(%,7) and a subset A C M* such that
n(X)U{p(%.a) : a € A} isa defining type of H . the family {z(M) Np(M.a) : a €
A} is a filter for every elementary extension M of M and the sets ¢(G. a) C f are
symmetric for every @ € A. We call ¢(X. 7) a defining formula of H.

A family $ of relatively nice subgroups of G is called uniform if its members have
a common defining formula.

LemMA 5.2 (Baldwin Saxl chain condition for relatively nice subgroups). If $) is
a uniform family of relatively nice subgroups of G, there is n € w such that any finite
intersection of members of §) is the intersection of at most n of them.

PrOOF. Otherwise, by the usual Baldwin Saxl argument, for every n € @ one

by € Hi <= icJ.Letp(x,7)beacommon defining formula for the members
of 9, and let n(X) U {@(X.a;) : @; € A;} a defining type for H,. Let B; and B; be
the finite sets

By ={b;:Jc{l.... n}}. Bi={byjcB:icJ}.

As the family {¢(B,.a;) : a; € A;} is a filter for every i € {I...., n}, by the

Compactness Theorem, there are (aj..... a,) in G such that B; C ¢(By.a;) C
@(By.a;) for every i and every a; € A;, so that M = ¢(by.a;) if and only if i € J.,
a contradiction. —

COROLLARY 5.3. If § is a uniform family of relatively nice subgroups of G, then
ﬂHeﬁ H is relatively nice and the family {ﬂHeﬁ H:RC 53} is uniform.

ProOF. Let n be the natural number provided by Lemma 5.2 and for every H
in $. let {p(%.a):a € Ay} be a type defining H relatively to G. Let A be the set
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LJHeﬁ Ay . Calling (%, y) the formula o (X, 1) A+ - - A@(X, 7,), the type {w (%, a) :
a € A"} defines the group ﬂHeﬁ H and the family {x(M) N w(M,a) :a € A"} is
a filter by Lemma 5.2. -

5.2. Uniform definability. A third difficulty arises. If H C G is a relatively nice
subgroup with defining type {¢(x, @) : i € w} and |a;| = k., it is not clear whether
there is a uniform partial type p((Ji)ic) such that for every countable B C M*,
M [ p(B) implies that ﬂz'eB ©(G.b) is a relatively nice subgroup of G. This
prevents applying compactness arguments. We introduce therefore a strengthening

of the preceding notions. The Compactness Theorem ensures that for all i € w,
there is j € w and a definable set X; with G C X; C f; and

(X Np(M.a)))’ € p(M.a). (2)

DEFINITION 5.4 (nice subgroup). We say that H C G is nice (in G) if it is
relatively nice with defining type {¢(%.4a) : @ € A} and there is a definable set X
with G C X C f; such that for all @ € A4, thereis b € A4 such that

(X No(M.B))’ C p(M.a).
We call X a second base for N.
If H C Gisnicein G and K C H is nice in H, then K is nice in G.

DEFINITION 5.5 (uniform family of nice subgroups). A family $j of nice subgroups
of G is uniform if its members have the same defining formula and share a common
second base.

LeEMMA 5.6 (a uniform family is closed under intersections). If $) is a uniform
family of nice subgroups of G. then ﬂHeﬁH is nice in G, and the family

{nHeﬁH R C Y)} is uniform.

Proor. By Corollary 5.2, the subgroup ﬂHeﬁ H is relatively nice in G, and it
is easy to see that a common second base for £ is a common second base for the

family {ﬂHeRH :RC@}. —

ExaMPLE 5.7. A relatively definable subgroup H = ¢(G) is nice. As (G N
@(M))?> C p(M). by the Compactness theorem. H has a second base.

ExaMmpLE 5.8. For any g € G. the centraliser Cg(g) is relatively definable in G,
and the family {Cs(g) : g € G} is uniform, sharing 3, as a second base if one puts
B = ¢1(M) and chooses ¢(X) A Xy = yX as a defining formula. In particular,
Cg(A) is nice forany 4 C G.

ExAMPLE 5.9. If G is type definable over 4 C M, if A C Aut(M/A) and H C G
is nice with an 4-definable second base X, then {H? : ¢ € 2} shares X as a second

base, and ﬂ H? is nice.
e

ExampLE 5.10. Let G be type definable over A, and H C G a relatively nice
subgroup with defining type {¢(x,a;) : i € I} where I is a linearly ordered set.
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If (a;);cr is indiscernible over A, the set X; provided by (2) does not depend on «;,
so H is nice.

Lemma 5.11. If H C G is a nice subgroup and g € G, then HS is nice and the
family {H® : g € G} is uniform. In particular H* is nice for any A C G.

Proor. By Lemma 5.6, we need only find a common second base for { H¢ : g €
G}.Let X C f; be a second base for H and {¢(X.a) : @ € A} a defining type. For
all @ € A thereis b € A such that

(X Np(M.b))* € p(M.a).

By the Compactness theorem, there is a definable Y C f3 such that G C Y3 C X.
It follows that for every g € G, one has

(Y Np(M.b)*)’ C p(M.a)e. 2

LemMMA 5.12 (Baldwin Saxl chain condition for subsets). Let X be a family of

subsets of Po. For all X € X. let X'3 C B, be symmetric with (X'/?)> ¢ X

and let '3 = {X'3: X € X} be uniformly definable by a formula ¢(X.7). Let

n=VC(p*(%.7)). Forevery X € X.let X'/** C B,y besymmetric with (X'/*")" ¢
X3 Forall Xi.....X,.1 € X, there isjed{l,..., n+ 1} with

1/3 1/3 1/3 1/3
XPanxaxY o ax cxine 0 X
PrOOF. Similar to the proof of Lemma 2.2. -

COROLLARY 5.13 (uniform definability of niceness). Let H C G be a type defin-
able subgroup with defining type {¢(X.a) : a € A}. H is nice if and only if there is a
definable X with G C X C ) such that for all @ € A there is b € A with

(X Np(M.B))’ C p(M.a).

Proor. Without loss of generality, we put By = ¢(M). replace (X, 7) by ¢o(X) A
@(%.7) A (%7, 7) and assume that X = 1. Let X = {o(M.a) : a € A} and
X3 = {B.ine(Ma): ae A} for any nonzero j € w. Let @ € A. By
assumption, there are @ = bo.by. ... ,Ej such that forall£ € {0,...,j},

(B N(M. 5z+1))2 C p(M. by).
It follows that
(B N o(M.B)) C (B 0o (M.5)” € (B no(M.B;)) " oo C i o(M o).

Putting n = VC (o*(%, 7)). the families X, X!/3, and X!/3" satisfy the assumptions
of Lemma 5.12. so the family {f,.2 N ﬂ'EB o(M.a):aeB. |B|<n+l}isa
filter. -

5.3. Normaliser. Let H C G be a nice subgroup with defining type {¢(%,a) :
a € A} and N C G a type definable subgroup that normalises H. By the Com-

pactness Theorem, for all @ € A, there are b € A, definable sets Xz, K; with
G CX;Cpand N C K; C fpsuch that forall g € K,

(XaNp(M.b))* C p(M.a).
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DEFINITION 5.14 (uniformly normal subgroup). If H C G is nice and normalised
by a type definable subgroup N C G, we say that H is uniformly normalised by N if
there are definable sets X, K with G C X C fyand N C K C f such that for all
a € A, thereis b € 4 such that forall g € K,

(X Ne(M.b))* C p(M.a).

THEOREM 5.15 (normalising a nice envelope). Let M be k-saturated for k > R
and let H C G be a nice subgroup (resp. relatively definable) defined by a partial type
of size < k. Let A C H and Ny C Ng(A) be subgroups of cardinality < k. There
are a nice (resp. a conjunction of a uniform family of relatively definable) subgroup
E C G, and a type definable subgroup Ng C G such that

ACECH and N4 C Ng C Ng(E).

Moreover, Ng normalises E uniformly.
ProoF. Let {¢(x.h) : b € B} be a defining type for H. There is a definable
Xp C p containing G such that for all b € B, there is ¢ € B with
_ 2 =
(p(M.E) N Xo)" C p(M.D). (3)

There are also definable symmetric X,, C f,1 such that X 11 C Xy foralln € w.

As G is the intersection of type definable groups defined by such countable types,

we may assume without loss of generality that G = m . X,. By Lemma 5.12 and
ncw

(3). replacing ¢ (X, j) by a finite conjunction of (%, j;). one may also assume that
{o(M.b) N Xy : b € B} is a filter.

Cram 2. There is n €  such that for all b € B and ay,....a, € G with
A C ﬂ1<‘< ©(G.b)%, there are a nice subgroup K C G with countable defining
<ign
type {p(x.¢):Cc € C},someay...., an € G and ¢ € C such that for all g € N4

n g n
(ﬂ o(M.2)™ N Xn> cNeM.b)". (o(M.2)NXy)* C p(M.B). and
i=1 i=1
n
AcC)K*NK.
i=1
PrOOF OF CLAIM 2. Fix b € B. By the Compactness Theorem, there is an upper
bound n € w for { VC(¢(7.b)*) : b € M}. By Lemma 5.11. the family {H¢ : g €
G} is uniform, of second base X} say, so there exists 51 € B suchthatforallg € G,
- 3 - - 2 -
(o(M.b1)* N Xyik) "c (M. b)* and (e(M.by) N Xy)” C p(M.b). (4)
By Lemma 5.12. for every gi..... gn+1 € G thereisi € {1....,n+ 1} with

n+l
N eMb)¥ N X C[)o(MB)Y.
Je{l...nt11\{i} Jj=1

By induction on |/|. for all finite J C G, there are J, C J with [J,| < n + 1 and
by € B with

(M e(M.52)¢ 0 Xyt © () 0 (M.B)¢ and  (p(M.b2) N Xo)* € o(M.D). (5)
g€y gelJ
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We put X; = ¢;(M) for every i € w and consider the partial type

(o(%.20) A ¢o(3))” Cz (5.5, (/\sa(x,z'o)*fA¢n+k(>E)) Cs /\sa(x,é)“f) :

j=1
D@ Z) . . @ Z)" 1 EG. ... TG igeN(d). GEA i w}

By (5). the type p is finitely satisfiable in Ng(A4)*" x B®. Let (a;.....a,.C) be
a realisation of p. By Corollary 5.13, the type {(p()E,E) 1 C € C} defines a nice
subgroup of G. -

Let n € w provided by Claim 2. We may assume that n > 6. We call w(x. p1....
Pni1) the formula @ (X, 7,01)7 A - A (X, Puy1).
CLaM 3. There are (¢})jee € (M) and (5;) ;e € (G")” such that for all
gENy jEwandb € B,
w(M.5;.;) N Xo C p(M.D).
AC (WM jj1.60)N X)) Cw(M.7;.6;) and

- - 2 -
(w(M.5j41.¢41) N X,)" Cw(M.7;.¢).

PrOOF OF CLaM 3. We fix b € B and first build two families (¢;) c0. (7)) co
depending on b. We take &y = b and yo = (1.....1). As H is nice, there is d; € B
such that

(e(M.d1) N X0)* C p(M, &). (6)

By Claim 2, there are ¢; and j) such that forall g € Ny,
AC (y(M.51.6) N X,)* Cw(M.jo.dy).
By (6). i
(w(M.71.6) N X,)* Cy(M.5o.d1) N X5 C w(M. 5. &)
One also has

(w(M.j1.¢1)N Xn)2 C (w(M.j0.dy) N X3)2 C (M. 7. ).

We go on inductively using Claim 2. As the family {o(M.b) N X, : i € I} isa
filter, the conclusion follows from the Compactness Theorem and the saturation
assumption. -

CrLAaM 4. There is an indiscernible sequence (¢,),eq € (G"1)? such that for all
g € Ny rational numbers p < q andb € B,

w(M.G,) N Xo C o(M.b), A C (w(M.G,) N X,)* Cw(M&,). and
(w(M.&,) N X)) C y(M.&,).

Proor oF CLamm 4. From Claim 3 by the Compactness Theorem and
Ramsey’s. -
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We may now finish the proof of Theorem 5.15. For every m > n define N, C X,
by
N = {g € X, (X Nyw(ME,))E Cw(M. Eq)}.

Note that (X;) _ is an increasing sequence so (N},) _ is decreasing. Define

m>n

N=)(\Ny, and E=()w(Me

m>n p<q q€Q

As (XnXm)g C X,f for all g € X, and m > n, for every rational numbers
p < r < ¢ and natural number m > n, one has

+1 +1)2
(Vg AN C N
It follows that N C G is a subgroup. For all m > n + 1 one has G C X, X» so N
normalises £. By Lemma 5.12 and indiscernibility of (¢,),cq. for any fixed m > n,
there is k (m) € w such that every finite intersection of N}, contains an intersection
of at most 3k? sets of the form N/,3*. By the Compactness theorem, one can find

a countable descending chain Ny D Ny --- D Ny D --- of definable subsets of X
such that forall ¢ > 1,

NiCN,C [N}t and N7, C N,

r<q

It follows that ﬂe>1 Ny is a type definable subgroup of G that uniformly normalises
E. The group E is nice by Remark 5.10. -

5.4. External and discernible subgroups. G still stands for a type definable group
of type 7 and base f§ in the NIP structure M. We fix M a |G |*-saturated elementary
extension of M and we write G for 7n(M).

DEFINITION 5.16 (external subgroup). A subgroup H C G is external if there is
a relatively definable subgroup H C G (a witness) with H = HN G. A family of
external subgroups is uniformif there is a corresponding family of relatively definable
witnesses having a common defining formula and sharing a common second base.

Lemma 5.17.  The conjunction of a uniform family $) of external subgroups of G is
an external subgroup of G, and the family {ﬂHER H:RC 55} is uniform.

PrOOF. Let A C M a subset and X C G a definable subset such that (G, a) C G
is a subgroup with second base X forall @ € A. Let H be the intersection of ¢ (G, a)
over A. By Lemma 5.12, we may replace the formula ¢(x, 7) by (%, 71) A -+ A
(X, 7,), the set X by an nth root containing G, and assume that {p(G,a) N X :
a € A} is a filter. The type

).

"<|

p(7) = {(p(%.5) AW (%)) Cx p(%.2). (.

(p(2.7) Ay ()

\_/

Cf<p()€,)7):d€A,/_lEH}

is finitely satisfiable in A. Let a be a realisation in M. The subgroup ¢(G.a) C G is
relatively definable, X is a second base and H = ¢(G. a). -
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DEFINITION 5.18 (DISCERNIBLE SUBGROUP). A subgroup H C G is discernible if
there is a nice subgroup H C G (a witness) such that H = HN G. A family of
discernible subgroups of G is uniform if there is a corresponding family of nice
witnesses that is uniform.

LEMMA 5.19. The conjunction of a uniform family $ of discernible subgroups of G
is a discernible subgroup, and the family {ﬂHeﬁ H:RC 55} is uniform.

ProOF. By Lemma 5.6. =

THEOREM 5.20 (on external subgroups). Let M be a NIP structure, M = M an
| M | "-saturated elementary extension, G = n(M) a type definable group, G = £(M)
and H = HN G an external subgroup of G.

(1) There is n € w such that for every A C G, there are ay. .. ..a, in G with
Cg(A4) = Cg(ay.....a,).
(2) For every n € w, there are relatively definable subgroups K. Z., C G such that
H=KnNG, Z,H)=2,NG, and Z,C Z,(K).
(3) There is n € w such that for every A C G, there are ay. .. ..a, in G with
H*=H"N---NnH"NG.

(3) For every A C G containing the parameters of w, for every %A C Aut(M/A),
the group H* is external.

PRrOOF.

(1) By Example 5.8, the groups Cs(a) form a uniform family of external sub-
groups. By Lemma 5.17, C(A) is external, and by the proof of Lemma 5.17,
Cg(A) is of the desired form.

(2) Similar to the proof of Theorem 3.7.3 using the following claim instead of
Claim 1.

Cramm 5. Let A, B C G be two subgroups, D C G a relatively definable subgroup
normalised by both A and B such that [A, B] C D. Assume that A and B are con-
tained in a relatively definable subgroup Np of G that normalises D. There are two
relatively definable subgroups A, B C G containing A and B respectively and such that
[A.B] C D.

PrROOF OF CLAIM 5. Similar to the proof of Claim 1, defining

A(C)= (] {xeNp:[x.c]cD}. B(C)= (] {yeNp:[c.y]CD}.

ceC ceC
[4.c]CD [e.B]CD

_|

(3) By Lemma 5.11, the groups H¢ form a uniform family of external subgroups.
By Lemma 5.17. H* is external. By the proof of Lemma 5.17. H is of the
desired form.

(4) Let M be an |M|"-homogeneous elementary extension of M and G; =
n(Mjy). Forevery o € 2. let & € Aut(M;/A) be an extension of ¢ and A =
{G : 0 € A}. Putting H = ¢(G) and H; = ¢(G,). one has H* = H} N G.
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Since H; has a second base definable over 4 by Example 5.7, the family
{H¢ : G € 2} is uniform by Example 5.9. By Lemma 5.17, H* is external.

_|

THEOREM 5.21 (on discernible subgroups). Let M be a NIP structure, M = M an

| M |T-saturated elementary extension, G = n(M ) a type definable group. G = n(M)
and H = HN G a discernible subgroup of G .

(1) Forevery n € w, there are nice subgroups K. Z,, C G such that
H=KnNGa, Z,H)=72Z,NG. and Z,C Z,(K).

(2) Forevery A C G. the group H* is discernible.

(3) For every A C G containing the parameters of a second base of H and n. for
every A C Aut(M/A), the group H* is discernible.

(4) There are a nice subgroup K C H of G and a type definable subgroup N C
N¢(K) of G such that

H=KNG and  Ng(H)=NnNG.

Proor. (1) Similar to the proof of Theorem 3.7.3, using the following claim
instead of Claim 1.

CrLam 6. Let A, B C G two subgroups, D C G anice subgroup such that[A, B] CD.
Assume that A and B are contained in a nice subgroup Np of G that uniformly

normalises D. There are two nice subgroups A,B C G containing A and B respectively
such that [A.B] C D.

PrOOF OF CLAM 6. Asin Claim 1, there is a finite C C Np such that, defining for
any S C Np

A(S)= () {xeNp:[x.c]cD} and B(S)= () {y€Np:[c.y]CD}.

ceS cesS
[4.c]CD [e.B]CD

one has [A(AUBUC),B(AUBUC)] C D. Let {¢(x.a;) : i € I} be the type that
defines D relatively to G and let f» = ¢»(M). Let us show that, for any S C Np,
putting
H;(s) = {g € (M) : [g.5]1 C p(M. a;)}.
the family $ = {ﬂ'el Np NH;(s) : s € S} is a uniform family of nice subgroups
in Np. By Lemma 5.6, this will show that A(4 U B U C) and B(4 U B U C) are nice
in Np, hence in G. We need only find a common second base for the members of §).
As D is nice in G, there is a definable set Y with G C Y such that for all i € I there
is j € I with
2

(YNe(M.a;))” C oM. a;).
As D is uniformly normal in Np, there is a definable Z with Np C Z C ¢»(M) such
that forall j € I, there is k € I such thatforall g € Z,

(Z N (M. ak))g Cp(M.a;).

There are also definable sets Y'/° and Z!/* containing Np with

(Y/9°cyY and (z'4'cz
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We put W = ¢3(M) N Y/ 1 Z!/* and claim that (W N Hk(s))2 C H;(s) for any
s € Np.
For all elements g. 7 € W N Hy (s). one has

[g.5]" € ((Z1/4)4ﬁs0(M, ak))h and [h.s] € (24 N oM. ap).

and so
[g.5]" € p(M.a;) and [h s] € p(M.a;).
hence
h 1/6\6 2
lgh.s] = [g.5V'Th.s1 € (V) NpM.a))) € p(M.a)).
This shows that gh belongs to H;(s) and that W is the desired second base. -
(2) H* is discernible by Lemma 5.11 and Lemma 5.19.
(3) Let M, be an |M|*-homogeneous elementary extension of M and G; =
n(M;y). For every o € 2, let G € Aut(M;/A4) be an extension of ¢ and A =
{6 : 0 € A}. PuttingH = ¢(G) and H; = ¢(G). one has H* = H} NG, so
H* is discernible by Example 5.9 and Lemma 5.19.
(4) By Theorem 5.15. =

COROLLARY 5.22. Let G be a NIP group. A C G a subset andn € w, then C}} (4)
is discernible.

PrOOF. The nth centraliser of 4 is defined by induction on n putting C2(A4) = {1}
and

Cet'(4) = [ Na(CE(A) N {g € G :[g. 4] C CE(A)}.
k<n

We proceed by induction on n. For n = 1, this is Theorem 3.7.1. Assume that
Cl(A) = C, N G where C, C G is nice. One has [CA"(4), 4] C C,. As 4 and
C2'(A4) normalise Cl2(A4). by Theorem 3.8.3 applied to C, N G, there is a nice
subgroup N C G that normalises C, (hence normalise it uniformly) and contains
both 4 and C/*'(4). By Claim 6, there is a nice subgroup H C G such that
[H. 4] € C, and C2™'(4) C H. By induction hypothesis and Theorem 3.8.3, there
is a nice subgroup M of G such that

MNG = (] Ne(C§(4)).
k<n

Putting C,,.; = M N H, one has
CiN(4) =Cr NG o

§6. Envelopes in type definable groups. Let M be a NIP structure and G a type
definable group. We fix a |G |*-saturated extension M of M and write G for 7(M).

THEOREM 6.1 (abelian envelope). Let A C G be an abelian subgroup. There is an
external subgroup H = HN G with A C H such that H is abelian, H is A-invariant
and normalised by Ng(A).

ProOF. The A-invariant subgroup Z(Cg(A)) contains 4 and is normalised by
Ng(A). It is an external abelian subgroup by Theorem 5.20.1 and 5.20.2. -
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THEOREM 6.2 (nilpotent envelope). Let N C G be a nilpotent subgroup of class
n. There is an external subgroup H = HN G with N C H such that H is nilpotent of
class n, H is N-invariant and normalised by Ng(N).

Proor. By induction on k£ < n, we build a chain Zy < --- < Zj; of relatively
definable subgroups of G such that

Z()Z{l}, Zk(N)CZk, and [Zk,N]CZkfl.
If Z is built, as one has
[Zi11(N). N] C Zx(N) C Zy.

and as N is contained in the subgroup Cg(Zy/Zi_1) which normalises Z;, by
Claim 5, there is a relatively definable subgroup Z;.; of G containing Z;(N)
such that

[Z+1.N] C Zy.

For every k < n, the group
H; = {X cZ,: [Zk,x] C Zkfl}

is external by Lemma 5.17, and the group H; N- - -NH,, is a nilpotent group of class n
that contains N. This finishes the induction, and one concludes with Theorem 5.20.3
and 5.20.4. -

THEOREM 6.3 (soluble envelope). Let S C G be a soluble subgroup of derived
length €. There is a type definable subgroup N C G with Ng(S) C N and a nice and
uniformly normal subgroup H C N that contains S and is soluble of derived length
L. More precisely, H is the intersection of a uniform family of relatively definable
subgroups of N.

PrOOF. Let us consider the derived series S > S > .- > S® and let H be a
relatively definable abelian subgroup of G that contains S~ and that is normalised
by Ng(S). Let N; be a type definable subgroup of G that normalises H; and
contains Ng(S). We build by induction on k < £ two families 1 <H; < --- <t Hy
and Nj....,N; of subgroups of G such that for every k < £. the group N; is a
type definable subgroup of G that contains N (S) and Hy is a nice and uniformly
normal subgroup of N;. that satisfies

SU=%) - H, and [Hg Hi] C Hey.
If N, and Hj, are built, one has
[S<€fk71)7S<efk71)] c Sk H,.
By Claim 6. there is a nice subgroup Ky, of N; such that
SUFD Cc Keyy and  [Kepr. Kiqa] € Hy.

By Theorem 5.21.4 there is a type definable subgroup Nj,; of G that contains
N¢(S) and a nice subgroup Hy; of Ky that contains S“~*~1 and is uniformly
normalised by Ny 1. We put

N=N;Nn---NN;, and H = H,. -
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