Model theory 1. Structures, morphisms

Exercise 1 (on substructures) Let $L_{gp} = \{\times, ^{-1}, 1\}$ be the language of groups and let G be a group considered as an L_{gp} -structure where $\times, ^{-1}$ and 1 have their natural interpretations.

- 1. Show that an L_{gp} -substructure of G is a subgroup of G, and reciprocally that a subgroup of G is an L_{gp} -substructure of G. In the reduced language $L_s = \{^{-1}\}$ interpreted naturally in G, how can you describe the L_s -substructures of G?
- 2. Let L be any language, M an L-structure, and $\{M_i : i \in I\}$ a family of L-substructures of M. Show that the intersection $\bigcap_{i \in I} M_i$ is again an L-substructure of M when it is non-empty.
- 3. Recall that for a subset A of G, the subgroup generated by A is the intersection of all the subgroups of G containing A. Show that the subgroup generated by A is precisely the L_{gp} -substructure generated by A. What is the L_s -substructure of G generated by A?
- 4. If L is any language, M an L-structure and $B \subset M$, show that the domain of $\langle B \rangle$ is the smallest subset of M containing B, the constants of L^M and closed under the functions of L^M .

Exercise 2 (on the isomorphism relation) Let L be a language, (M, L^M) , (N, L^N) , (S, L^S) three L-structures.

- 1. An example first: if L_{ring} is the language of rings, R_1 and R_2 two rings with their natural L_{ring} -structures. Show that σ is a ring isomorphism from R_1 to R_2 if and only if σ is an L_{ring} -isomorphism from R_1 to R_2 .
- 2. Back to the general case. Show that if α is an *L*-isomorphism from *M* to *N*, and β an *L*-isomorphism from *N* to *S*, then $\beta \circ \alpha$ is an *L*-isomorphism from *M* to *S*.
- 3. If α is an *L*-isomorphism from *M* to *N*, show that α^{-1} is an *L*-isomorphism from *N* to *M*. Show that the relation 'there is an *L*-isomorphism from *M* to *N*' defines an equivalence relation on the class of all *L*-structures.

Exercise 3 (on the automorphism groups) Let L be a language, (M, L^M) an L-structure, A a subset of M. Let us write Aut(M) for the set of all L-automorphisms of M, $Aut(M/\{A\})$ for the set consisting of σ in Aut(M) that fix A setwise (*i.e.* that satisfy $\sigma(a) \in A$ and $\sigma^{-1}(a) \in A$ for all a in A), and Aut(M/A) for the σ in Aut(M) that fix A pointwise (*i.e.* that satisfy $\sigma(a) = a$ for all a in A).

- 1. Show that Aut(M) is a group (for the composition law), that $Aut(M/\{A\})$ is a subgroup of Aut(M) and that Aut(M/A) is a normal subgroup of $Aut(M/\{A\})$. Is $\{\sigma \in Aut(M) : \sigma(A) \subset A\}$ always a subgroup of Aut(M)? Show that $\{x \in M : \sigma(x) = x\}$ is an L-substructure of M for all σ in Aut(M).
- 2. An example. Let L_{field} be the language of fields and let K be a field with its natural L_{field} structure (to interpret $^{-1}$ in 0, we adopt the convention that $0^{-1} = 0$). If A is a subset of K, show that Aut(K/A) is the *Galois group* Gal(K/F) of a field extension K/F to be determined (we define Gal(K/F) as the group of field automorphisms of K fixing the subfield F pointwise).

Exercise 4 (a bijective *L*-morphism need not be an *L*-isomorphism) Give an example of a language L, two *L*-structures M and N and a bijective *L*-morphism from M to N which is not an *L*-isomorphism.