Model theory 11. Categoricity

- **Exercise 1** (algebraically closed fields) 1. Let K be an infinite field and F a subfield. Show that if K/F is algebraic and F infinite, then K and F have the same cardinality. Let B be a transcendence basis of K over F. Express |K| in terms of |B| and |F|.
 - 2. Show that the L_{ring} -theory of an algebraically closed field is not \aleph_0 -categorical.
 - 3. Show that the L_{ring} -theory of an algebraically closed field is λ -categorical for every $\lambda > \aleph_0$.

Exercise 2 (*K*-vector spaces) Let *K* be an infinite field and L_K the language $\{+, m_k, 0 : k \in K\}$ where m_k is unary function symbol for every *k*. A *K*-vector space *V* has a natural L_K -structure where m_k is interpreted putting $m_k^V(x) = kx$ for every *x* in *V*. Let Σ be the theory of all vector-spaces.

- 1. Write down the axioms for Σ .
- 2. Show that Σ is not |K|-categorical.
- 3. Show that Σ is λ -categorical for every $\lambda > |K|$. Is Σ complete?
- 4. Does Σ eliminate quantifiers?

Exercise 3 Let *L* be the language $\{=, c_n : n \in \mathbf{N}\}$ where c_n is a constant symbol for every *n*. Let **N** be the *L*-structure such that $c_n^{\mathbf{N}} = n$, and let Σ be its theory. Let λ be an infinite cardinal. Is Σ λ -categorical? Does Σ eliminate quantifiers?