Model theory 12. Definability

Exercise 1 (number of definable sets) Let M be an L-structure. Compare the cardinality of the set of definable subsets of M with the set of all subsets of M. Give a few examples.

Exercise 2 (definable maps) Let M be an L-structure and $f: M^n \longrightarrow M^m$ a map. We say that f is definable if its graph is a definable subset of M^{m+n} .

- 1. Let $f: M^n \longrightarrow M^m$ and $f: M^m \longrightarrow M^{\ell}$. If f and g are definable, is $g \circ f$ definable? If $g \circ f$ is definable, are f and g definable?
- 2. Let $f: M^n \longrightarrow M$. If f is definable, is the image of f definable? If the image of f is definable, is f definable?
- 3. If $f: M^n \longrightarrow M$ is a definable bijection, is f^{-1} definable?
- **Exercise 3** (on interpretability) 1. Let L_1, L_2, L_3 be three languages, M_i an L_i -structure for each $i \in \{1, 2, 3\}$. M_3 is interpretable in M_2 and If M_2 is interpretable in M_1 , show that M_3 is interpretable in M_1 .
 - 2. Show that if M is an infinite L-structure, then any finite structure (in a finite language) is interpretable in M.
 - 3. Let K be an infinite field, and L/K be a finite algebraic extension. Show that L is interpretable in K. Is K is interpretable in L?

Exercise 4 (one types in **Q**) Determine all the 1-types over **Q** in the ordered set $(\mathbf{Q}, <)$. What is the cardinality of $S_1(\mathbf{Q})$?