Model theory - Sheet 2

Patrick Helbig

Exercise 1

Claim. In $L := L_{ring}$, for the natural ring structure on \mathbb{R} , the functions $t^{\mathbb{R}}$ for L-terms t are precisely the polynomial functions on \mathbb{R} having coefficients in \mathbb{Z} . The smallest L-substructure of \mathbb{R} ist \mathbb{Z} .

Proof. Let t be an L-term. We show by induction on c(t) that $t^{\mathbb{R}}$ ist a polynomial function with coefficients in \mathbb{Z} .

If t is a constant, then $t^{\mathbb{R}} = 0$ or $t^{\mathbb{R}} = 1$, which are polynomial functions with coefficients in \mathbb{Z} . If t is the variable x_i , then $t^{\mathbb{R}}$ is the monomial X_i .

If t is of the form $f(t_1, ..., t_n)$ with $t_1, ..., t_n$ L-terms, then $f^{\mathbb{R}} = +$ or $f^{\mathbb{R}} = \times$. In the first case, by induction hypothesis, $t^{\mathbb{R}}$ is the sum $t_1^{\mathbb{R}} + t_2^{\mathbb{R}}$ of two polynomial functions with coefficients in \mathbb{Z} , so it is such a function. In the second case, $t^{\mathbb{R}}$ is the product of two such functions, therefore it is itself such a function.

For the converse, we first note that for any constant $a \in \mathbb{Z}$, we have that the function $x \mapsto a$ is given by $t^{\mathbb{R}}$ with $t = 0 \pm (1 + ... + 1)$, where we add up |a| ones and choose a suitable sign. Furthermore, $x \mapsto x^n$ is given by $t^{\mathbb{R}} = x \cdot ... \cdot x$, where we multiply n - 1 times. Inductively, we find that any monomial of the form $ax_1^{n_1} \cdot ... \cdot x_r^{n_r}$ with $a \in \mathbb{Z}$ is given as $t^{\mathbb{R}}$ for some *L*-term *t* and, again by induction, any finite sum of such monomials is given as $t^{\mathbb{R}}$ for some term *t*. But these are just all the polynomial functions on \mathbb{R} having coefficients in \mathbb{Z} .

Let (S, L^S) be any *L*-substructure of \mathbb{R} . Then, $0 = 0^{\mathbb{R}}$ and $1 = 1^{\mathbb{R}}$ are in *S*. Since *S* is closed under addition, we inductively find that $\mathbb{N} \subseteq S$. Since $0 \in S$ and *S* is closed under subtraction, we also find that $-\mathbb{N} \subseteq S$. Therefore, $\mathbb{Z} \subseteq S$. Conversely, \mathbb{Z} is a subring of \mathbb{R} containing 0 and 1 so it indeed is an *L*-substructure of \mathbb{R} .

Exercise 2

1. Given a map $f : \mathbb{R} \to \mathbb{R}$, the statement is 'f is continuous on \mathbb{R} '.

Let $L = \{f_0\} \cup L_{ring}$, where f_0 is a unary function symbol. Let $M = \mathbb{R}$ with its natural L_{ring} -structure, where we interpret f_0 as the given map f.

We define the abbreviation $a \ge b$ as $\exists x(a - b = x^2)$ and a > b as $a \ge b \land a \ne b$.

Let σ be the *L*-sentence

$$\forall x_0 \forall \epsilon (\epsilon > 0 \to \exists \delta (\delta > 0 \land \forall x (\delta^2 > (x - x_0)^2 \to \epsilon^2 > (f_0(x) - f_0(x_0))^2))).$$

Then, f is continuous on \mathbb{R} if and only if $M \models \sigma$.

2. The set X has exactly 3 elements and the subset $Y \subseteq X$ has exactly 2 elements.

Let $L = \{Y_0\}$, where Y_0 is a unary relation symbol. Let M = X, where we let $Y_0^M(x)$ if and only if $x \in Y$.

We let σ be the L-sentence

$$\exists a, b, c(a \neq b \land a \neq c \land b \neq c) \land \forall a, b, c, d(a = b \lor a = c \lor a = d \lor b = c \lor b = d \lor c = d) \land \exists a, b(Y_0(a) \land Y_0(b) \land a \neq b) \land \forall a, b, c(Y_0(a) \land Y_0(b) \land Y_0(c) \to a = b \lor a = c \lor b = c).$$

Since the first part of the first line describes that X has at least 3 distinct elements and the second part of the first part describes that X has at most 3 distinct elements, and the first part of the second line describes that Y has at least 2 distinct elements and the second part of the second line describes that Y has at most 2 distinct elements, it follows that $M \models \sigma$ if and only if X contains exactly 3 distinct and Y contains exactly 2 elements.

3. The binary relation \leq is a linear order on X.

Let $L = \{\leq_0\}$ be the language containing only one binary relation symbol. Let M = X and interpret \leq_0 as the relation given on X.

Let σ be the *L*-sentence

$$\forall x(x \leq_0 x) \land \forall x, y(x \leq_0 y \land y \leq_0 x \to x = y) \land \forall x, y, z(x \leq_0 y \land y \leq_0 z \to x \leq_0 z) \land \forall x, y(x \leq_0 y \lor y \leq_0 x).$$

Then, $M \models \sigma$ if and only if (X, \leq) is a linear order.

4. $\Gamma \subseteq X^2$ is the graph of a surjective function from X to X.

Let $L = {\Gamma_0}$ the language where Γ_0 is a binary relation symbol. Let M = X and we interpret Γ_0 as Γ .

Let σ be the *L*-sentence

$$\forall x \exists y \Gamma_0(x, y) \land \forall x \forall y, y' (\Gamma_0(x, y) \land \Gamma_0(x, y') \to y = y') \land \forall y \exists x \Gamma_0(x, y).$$

The first and second part describe that Γ is the graph of a function: each $x \in X$ has one and only one image. The third part describes that this function is surjective.

5. Given a field K, the statement is 'every injective polynomial map from K to K is surjective'.

Let $L = \{I_0, S_0\}$, where I and S are unary relation symbols. Let M be the set of polynomial maps from K to K and let I be the subset of M of all injective maps and S be the subset of M of all surjective maps. We let $I_0^M := I$ and $S_0^M := S$.

Let σ be the *L*-sentence

$$\forall x(I_0(x) \to S_0(x)).$$

Then $M \models \sigma$ if and only if every injective polynomial map from K to K is surjective.

6. Given a field K, the statement is 'the polynomial $a_0 + a_1X + a_2X^2 + a_3X^3$ is irreducible over K'. Let $L = \{a_0, a_1, a_2, a_3\} \cup L_{ring}$, where $a_0, ..., a_3$ are constant symbols. Let M = K naturally interpreted as an L_{ring} -structure and let a_i be interpreted as the *i*-th coefficient of the given polynomial. Let σ be the *L*-sentence

$$(a_1 \neq 0 \land a_2 = 0 \land a_3 = 0) \lor ((a_2 \neq 0 \lor a_3 \neq 0) \land \forall x(a_0 + a_1x + a_2x^2 + a_3x^3 \neq 0)).$$

Since the given polynomial has degree at most 3, it is irreducible if and only if it has degree 1 or it has degree 2 or 3 and has no roots in K.

7. Through every two distinct points there is exactly one straight line.

Let $L = \{P, L, \in\}$, where P, L are unary relation symbols and \in is a binary relation symbol. Let M be a set of points and lines, where we interpret P(x) as 'x is a point' and L(y) as 'y is a line' and $x \in y$ as 'x is a point on the line y', if x is a point and y is a line.

Let σ be the *L*-sentence

$$\forall x, x'(P(x) \land P(x') \land x \neq x' \to \exists y(L(y) \land x \in y \land x' \in y \land \forall y'(L(y') \land x \in y' \land x' \in y' \to y = y'))).$$

Then $M \models \sigma$ if and only if there is one line through every two distinct points and this line is uniquely determined.

Exercise 3

Let M be an L-structure and N an L-substructure of M.

1. Claim. The inclusion map $i: N \hookrightarrow M$ is an *L*-embedding.

Proof. Let c be a constant symbol. Then, $i(c^N) = c^N = c^M$, since N is a substructure. Let f be a function symbol and $\bar{a} \in N^{n_f}$. Then, $i(f^N(\bar{a})) = f^N(\bar{a}) = f^M(\bar{a}) = f^M(i(\bar{a}))$ since $f^N = f^M|_N$. Let r be a relation symbol and $\bar{a} \in N^{n_r}$. Since $r^N = r^M \cap N^{n_r}$, we have $r^N(\bar{a}) \Leftrightarrow r^M(\bar{a}) \Leftrightarrow r^M(i(\bar{a}))$, so i is an L-morphism and an L-embedding.

2. Claim. If $\varphi(x_1, ..., x_n)$ is a quantifier-free formula and $(a_1, ..., a_n)$ an *n*-tuple in N, then

$$N \models \varphi(a_1, ..., a_n) \Leftrightarrow M \models \varphi(a_1, ..., a_n).$$

Proof. By induction on $c(\varphi)$.

If φ is an atomic formula, it is of the form $r(t_1, ..., t_m)$ for a relation symbol r and terms $t_1, ..., t_n$. Then

$$N \models \varphi(a_1, ..., a_n) \Leftrightarrow (t_1^N(\bar{a}), ..., t_m^N(\bar{a})) \in r^N \Leftrightarrow (t_1^M(\bar{a}), ..., t_m^M(\bar{a})) \in r^M \Leftrightarrow M \models \varphi(a_1, ..., a_n),$$

where we use that $t^N(\bar{a}) = t^M(\bar{a})$ for any term t (since the constants are interpreted the same way and the interpretation of a function in N is the restriction of the interpretation in M) and $r^N = r^M \cap N^{n_r}$. If φ is of the form $\neg \psi$ or $\psi_1 \wedge \psi_2$, the claim is clear by induction hypothesis. Since φ is quantifier-free, these are all cases.

3. Claim. If $\varphi(x_1, ..., x_n, y_1, ..., y_m)$ is a quantifier-free formula and \bar{a} an *m*-tuple in N, then

 $N \models \exists x_1, ..., x_n \varphi(x_1, ..., x_n, \bar{a}) \Rightarrow M \models \exists x_1, ..., x_n \varphi(x_1, ..., x_n, \bar{a}).$

The converse is not true.

Proof. Let $N \models \exists x_1, ..., x_n \varphi(x_1, ..., x_n, \bar{a})$. By definition, there are $b_1, ..., b_n \in N$ such that $N \models \varphi(\bar{b}, \bar{a})$. By 2., this implies $M \models \varphi(\bar{b}, \bar{a})$, so $M \models \exists x_1, ..., x_n \varphi(x_1, ..., x_n, \bar{a})$.

For the converse, let $L = L_{ring}$ and $M = \mathbb{R}$ and $N = \mathbb{Z}$ with their usual interpretations. Then, $M \models \exists x(x^2 = 1 + 1), \text{ but } N \not\models \exists x(x^2 = 1 + 1).$

4. Claim. If $\varphi(x_1, ..., x_n, y_1, ..., y_m)$ is a quantifier-free formula and \bar{a} an *m*-tuple in N, then

 $M \models \forall x_1, ..., x_n \varphi(x_1, ..., x_n, \bar{a}) \Rightarrow N \models \forall x_1, ..., x_n \varphi(x_1, ..., x_n, \bar{a}).$

Proof. Let $\bar{b} \in N^n \subseteq M^n$. Then $M \models \varphi(\bar{b}, \bar{a})$ by assumption, so by 2. we have $N \models \varphi(\bar{b}, \bar{a})$. Since \bar{b} was arbitrary, we conclude $N \models \forall x_1, ..., x_n \varphi(x_1, ..., x_n, \bar{a})$.

Also here, the converse does not hold; with notations as in 3., we have $N \models \forall x(x^2 \neq 1+1)$, but $M \not\models \forall x(x^2 \neq 1+1)$.

Exercise 4

Claim. Every *L*-formula is logically equivalent to a prenex one.

Proof. Let φ be an *L*-formula. Proof by induction on $c(\varphi)$.

If φ is an atomic formula, then φ is already prenex.

Let φ be of the form $\neg \psi$. By induction hypothesis, ψ is logically equivalent to a prenex formula ψ' . By induction on the number of quantifiers, we show that then $\neg \psi$ is logically equivalent to a prenex formula. If there are no quantifiers in ψ' , we are done. Otherwise, let ψ' be of the form $Qx\psi''$, where Q is a quantifier. Then, $\neg \psi'$ is $\neg Qx\psi''$, which is logically equivalent to $Q^{\vee}x\neg\psi''$, where Q^{\vee} is \forall if Q is \exists and vice versa. Since $\neg \psi''$ has one quantifier less than ψ' , by induction hypothesis it follows that $\neg \psi$ is logically equivalent to a prenex formula.

Let φ be of the form $\psi_1 \wedge \psi_2$. By induction hypothesis, ψ_1 and ψ_2 are logically equivalent to prenex formulas ψ'_1 respectively ψ'_2 . Possibly after renaming variables we can assume that the bound variables in ψ'_1 and ψ'_2 are distinct from each other. Again by induction on the number of quantifiers in ψ'_1 plus ψ'_2 , we can show that $\psi'_1 \wedge \psi'_2$ is logically equivalent to a prenex formula: Let ψ'_1 be $Qx\psi''_1$ and let ψ'_2 be $Q'x'\psi''_2$. Then $\psi'_1 \wedge \psi'_2$ is $Qx\psi''_1 \wedge Q'x'\psi''_2$, which is logically equivalent to $QxQ'x'(\psi''_1 \wedge \psi''_2)$ and by induction hypothesis, $\psi''_1 \wedge \psi''_2$ is logically equivalent to a prenex formula. Therefore, also ψ is logically equivalent to a prenex formula.

If φ is $\exists x\psi$, then ψ is logically equivalent to a prenex formula ψ' , so φ is logically equivalent to $\exists x\psi'$, which is prenex.