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Exercise 1

Claim. In L := Lring, for the natural ring structure on R, the functions tR for L-terms t are precisely
the polynomial functions on R having coefficients in Z. The smallest L-substructure of R ist Z.

Proof. Let t be an L-term. We show by induction on c(t) that tR ist a polynomial function with
coefficients in Z.

If t is a constant, then tR = 0 or tR = 1, which are polynomial functions with coefficients in Z. If t is the
variable xi, then tR is the monomial Xi.

If t is of the form f(t1, ..., tn) with t1, ..., tn L-terms, then fR = + or fR = ×. In the first case, by
induction hypothesis, tR is the sum tR1 + tR2 of two polynomial functions with coefficients in Z, so it is
such a function. In the second case, tR ist the product of two such functions, therefore it is itself such a
function.

For the converse, we first note that for any constant a ∈ Z, we have that the function x 7→ a is given by
tR with t = 0± (1 + ...+ 1), where we add up |a| ones and choose a suitable sign. Furthermore, x 7→ xn

is given by tR = x · ... · x, where we multiply n− 1 times. Inductively, we find that any monomial of the
form axn1

1 · ... · xnr
r with a ∈ Z is given as tR for some L-term t and, again by induction, any finite sum

of such monomials is given as tR for some term t. But these are just all the polynomial functions on R
having coefficients in Z.

Let (S,LS) be any L-substructure of R. Then, 0 = 0R and 1 = 1R are in S. Since S is closed under
addition, we inductively find that N ⊆ S. Since 0 ∈ S and S is closed under subtraction, we also find
that −N ⊆ S. Therefore, Z ⊆ S. Conversely, Z is a subring of R containing 0 and 1 so it indeed is an
L-substructure of R.

Exercise 2

1. Given a map f : R→ R, the statement is ’f is continuous on R’.

Let L = {f0}∪Lring, where f0 is a unary function symbol. Let M = R with its natural Lring-structure,
where we interpret f0 as the given map f .

We define the abbreviation a ≥ b as ∃x(a− b = x2) and a > b as a ≥ b ∧ a 6= b.

Let σ be the L-sentence

∀x0∀ε(ε > 0→ ∃δ(δ > 0 ∧ ∀x(δ2 > (x− x0)2 → ε2 > (f0(x)− f0(x0))2))).

Then, f is continuous on R if and only if M |= σ.

2. The set X has exactly 3 elements and the subset Y ⊆ X has exactly 2 elements.

Let L = {Y0}, where Y0 is a unary relation symbol. Let M = X, where we let YM
0 (x) if and only if

x ∈ Y .

We let σ be the L-sentence

∃a, b, c(a 6= b ∧ a 6= c ∧ b 6= c) ∧ ∀a, b, c, d(a = b ∨ a = c ∨ a = d ∨ b = c ∨ b = d ∨ c = d)

∧∃a, b(Y0(a) ∧ Y0(b) ∧ a 6= b) ∧ ∀a, b, c(Y0(a) ∧ Y0(b) ∧ Y0(c)→ a = b ∨ a = c ∨ b = c).

Since the first part of the first line describes that X has at least 3 distinct elements and the second
part of the first part describes that X has at most 3 distinct elements, and the first part of the second
line describes that Y has at least 2 distinct elements and the second part of the second line describes
that Y has at most 2 distinct elements, it follows that M |= σ if and only if X contains exactly 3
distinct and Y contains exactly 2 elements.
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3. The binary relation ≤ is a linear order on X.

Let L = {≤0} be the language containing only one binary relation symbol. Let M = X and interpret
≤0 as the relation given on X.

Let σ be the L-sentence

∀x(x ≤0 x)∧∀x, y(x ≤0 y∧y ≤0 x→ x = y)∧∀x, y, z(x ≤0 y∧y ≤0 z → x ≤0 z)∧∀x, y(x ≤0 y∨y ≤0 x).

Then, M |= σ if and only if (X,≤) is a linear order.

4. Γ ⊆ X2 is the graph of a surjective function from X to X.

Let L = {Γ0} the language where Γ0 is a binary relation symbol. Let M = X and we interpret Γ0 as
Γ.

Let σ be the L-sentence

∀x∃yΓ0(x, y) ∧ ∀x∀y, y′(Γ0(x, y) ∧ Γ0(x, y′)→ y = y′) ∧ ∀y∃xΓ0(x, y).

The first and second part describe that Γ is the graph of a function: each x ∈ X has one and only one
image. The third part describes that this function is surjective.

5. Given a field K, the statement is ’every injective polynomial map from K to K is surjective’.

Let L = {I0, S0}, where I and S are unary relation symbols. Let M be the set of polynomial maps
from K to K and let I be the subset of M of all injective maps and S be the subset of M of all
surjective maps. We let IM0 := I and SM

0 := S.

Let σ be the L-sentence
∀x(I0(x)→ S0(x)).

Then M |= σ if and only if every injective polynomial map from K to K is surjective.

6. Given a field K, the statement is ’the polynomial a0 + a1X + a2X
2 + a3X

3 is irreducible over K’.

Let L = {a0, a1, a2, a3}∪Lring, where a0, ..., a3 are constant symbols. Let M = K naturally interpreted
as an Lring-structure and let ai be interpreted as the i-th coefficient of the given polynomial.

Let σ be the L-sentence

(a1 6= 0 ∧ a2 = 0 ∧ a3 = 0) ∨ ((a2 6= 0 ∨ a3 6= 0) ∧ ∀x(a0 + a1x+ a2x
2 + a3x

3 6= 0)).

Since the given polynomial has degree at most 3, it is irreducible if and only if it has degree 1 or it
has degree 2 or 3 and has no roots in K.

7. Through every two distinct points there is exactly one straight line.

Let L = {P,L,∈}, where P,L are unary relation symbols and ∈ is a binary relation symbol. Let M
be a set of points and lines, where we interpret P (x) as ’x is a point’ and L(y) as ’y is a line’ and
x ∈ y as ’x is a point on the line y’, if x is a point and y is a line.

Let σ be the L-sentence

∀x, x′(P (x) ∧ P (x′) ∧ x 6= x′ → ∃y(L(y) ∧ x ∈ y ∧ x′ ∈ y ∧ ∀y′(L(y′) ∧ x ∈ y′ ∧ x′ ∈ y′ → y = y′))).

Then M |= σ if and only if there is one line through every two distinct points and this line is uniquely
determined.

Exercise 3

Let M be an L-structure and N an L-substructure of M .

1. Claim. The inclusion map i : N ↪→M is an L-embedding.

Proof. Let c be a constant symbol. Then, i(cN ) = cN = cM , since N is a substructure. Let f be a
function symbol and ā ∈ Nnf . Then, i(fN (ā)) = fN (ā) = fM (ā) = fM (i(ā)) since fN = fM |N . Let
r be a relation symbol and ā ∈ Nnr . Since rN = rM ∩Nnr , we have rN (ā)⇔ rM (ā)⇔ rM (i(ā)), so
i is an L-morphism and an L-embedding.
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2. Claim. If ϕ(x1, ..., xn) is a quantifier-free formula and (a1, ..., an) an n-tuple in N , then

N |= ϕ(a1, ..., an)⇔M |= ϕ(a1, ..., an).

Proof. By induction on c(ϕ).

If ϕ is an atomic formula, it is of the form r(t1, ..., tm) for a relation symbol r and terms t1, ..., tn.
Then

N |= ϕ(a1, ..., an)⇔ (tN1 (ā), ..., tNm(ā)) ∈ rN ⇔ (tM1 (ā), ..., tMm (ā)) ∈ rM ⇔M |= ϕ(a1, ..., an),

where we use that tN (ā) = tM (ā) for any term t (since the constants are interpreted the same way and
the interpretation of a function in N is the restriction of the interpretation in M) and rN = rM ∩Nnr .

If ϕ is of the form ¬ψ or ψ1 ∧ψ2, the claim is clear by induction hypothesis. Since ϕ is quantifier-free,
these are all cases.

3. Claim. If ϕ(x1, ..., xn, y1, ..., ym) is a quantifier-free formula and ā an m-tuple in N , then

N |= ∃x1, ..., xnϕ(x1, ..., xn, ā)⇒M |= ∃x1, ..., xnϕ(x1, ..., xn, ā).

The converse is not true.

Proof. Let N |= ∃x1, ..., xnϕ(x1, ..., xn, ā). By definition, there are b1, ..., bn ∈ N such that N |=
ϕ(b̄, ā). By 2., this implies M |= ϕ(b̄, ā), so M |= ∃x1, ..., xnϕ(x1, ..., xn, ā).

For the converse, let L = Lring and M = R and N = Z with their usual interpretations. Then,
M |= ∃x(x2 = 1 + 1), but N 6|= ∃x(x2 = 1 + 1).

4. Claim. If ϕ(x1, ..., xn, y1, ..., ym) is a quantifier-free formula and ā an m-tuple in N , then

M |= ∀x1, ..., xnϕ(x1, ..., xn, ā)⇒ N |= ∀x1, ..., xnϕ(x1, ..., xn, ā).

Proof. Let b̄ ∈ Nn ⊆Mn. Then M |= ϕ(b̄, ā) by assumption, so by 2. we have N |= ϕ(b̄, ā). Since b̄
was arbitrary, we conclude N |= ∀x1, ..., xnϕ(x1, ..., xn, ā).

Also here, the converse does not hold; with notations as in 3., we have N |= ∀x(x2 6= 1 + 1), but
M 6|= ∀x(x2 6= 1 + 1).

Exercise 4

Claim. Every L-formula is logically equivalent to a prenex one.

Proof. Let ϕ be an L-formula. Proof by induction on c(ϕ).

If ϕ is an atomic formula, then ϕ is already prenex.

Let ϕ be of the form ¬ψ. By induction hypothesis, ψ is logically equivalent to a prenex formula ψ′.
By induction on the number of quantifiers, we show that then ¬ψ is logically equivalent to a prenex
formula. If there are no quantifiers in ψ′, we are done. Otherwise, let ψ′ be of the form Qxψ′′, where Q
is a quantifier. Then, ¬ψ′ is ¬Qxψ′′, which is logically equivalent to Q∨x¬ψ′′, where Q∨ is ∀ if Q is ∃
and vice versa. Since ¬ψ′′ has one quantifier less than ψ′, by induction hypothesis it follows that ¬ψ is
logically equivalent to a prenex formula.

Let ϕ be of the form ψ1 ∧ ψ2. By induction hypothesis, ψ1 and ψ2 are logically equivalent to prenex
formulas ψ′

1 respectively ψ′
2. Possibly after renaming variables we can assume that the bound variables

in ψ′
1 and ψ′

2 are distinct from each other. Again by induction on the number of quantifiers in ψ′
1 plus

ψ′
2, we can show that ψ′

1 ∧ ψ′
2 is logically equivalent to a prenex formula: Let ψ′

1 be Qxψ′′
1 and let ψ′

2

be Q′x′ψ′′
2 . Then ψ′

1 ∧ ψ′
2 is Qxψ′′

1 ∧ Q′x′ψ′′
2 , which is logically equivalent to QxQ′x′(ψ′′

1 ∧ ψ′′
2 ) and by

induction hypothesis, ψ′′
1 ∧ ψ′′

2 is logically equivalent to a prenex formula. Therefore, also ψ is logically
equivalent to a prenex formula.

If ϕ is ∃xψ, then ψ is logically equivalent to a prenex formula ψ′, so ϕ is logically equivalent to ∃xψ′,
which is prenex.
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