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Exercise 1

Claim. In L := L4, for the natural ring structure on R, the functions t® for L-terms ¢ are precisely
the polynomial functions on R having coefficients in Z. The smallest L-substructure of R ist Z.

Proof. Let t be an L-term. We show by induction on c(t) that t® ist a polynomial function with
coefficients in Z.

If t is a constant, then t® = 0 or t® = 1, which are polynomial functions with coefficients in Z. If ¢ is the
variable z;, then ¢® is the monomial X;.

If t is of the form f(ti,...,t,) with t1,...,t, L-terms, then f® = + or f® = x. In the first case, by
induction hypothesis, t* is the sum ¢§ + t5 of two polynomial functions with coefficients in Z, so it is
such a function. In the second case, t® ist the product of two such functions, therefore it is itself such a
function.

For the converse, we first note that for any constant a € Z, we have that the function x — a is given by
t® with t = 0+ (1+ ... + 1), where we add up |a| ones and choose a suitable sign. Furthermore, x + "
is given by t® = z - ... - 2, where we multiply n — 1 times. Inductively, we find that any monomial of the

form ax}' - ... 2" with a € Z is given as t® for some L-term ¢ and, again by induction, any finite sum

of such monomials is given as t® for some term ¢. But these are just all the polynomial functions on R
having coefficients in Z.

Let (S, L) be any L-substructure of R. Then, 0 = 0% and 1 = 1% are in S. Since S is closed under
addition, we inductively find that N C S. Since 0 € S and S is closed under subtraction, we also find
that —N C S. Therefore, Z C S. Conversely, Z is a subring of R containing 0 and 1 so it indeed is an
L-substructure of R.

Exercise 2

1. Given a map f: R — R, the statement is ’f is continuous on R’.

Let L = {fo}UL,ing, where fy is a unary function symbol. Let M = R with its natural L,;,4-structure,
where we interpret fy as the given map f.

We define the abbreviation a > b as Jz(a —b=22) and a > basa >bAa # b.

Let o be the L-sentence
VaoVe(e > 0 — 30(5 > 0 AVz(62 > (z — x0)* — € > (fo(2) — fo(x0))?))).
Then, f is continuous on R if and only if M | o.

2. The set X has exactly 3 elements and the subset Y C X has exactly 2 elements.

Let L = {Yy}, where Yj is a unary relation symbol. Let M = X, where we let Y () if and only if
zeY.

We let o be the L-sentence

Jda,b,cla £bANa#cAb#c)AVa,be,dla=bVa=cVa=dVb=cVb=dVe=d)
A3a, b(Yo(a) AYo(b) Aa #b) AVa,b,c(Yo(a) ANYo(b) AYo(c) >a=bVa=cVb=c).

Since the first part of the first line describes that X has at least 3 distinct elements and the second
part of the first part describes that X has at most 3 distinct elements, and the first part of the second
line describes that Y has at least 2 distinct elements and the second part of the second line describes
that Y has at most 2 distinct elements, it follows that M = o if and only if X contains exactly 3
distinct and Y contains exactly 2 elements.



3. The binary relation < is a linear order on X.

Let L = {<o} be the language containing only one binary relation symbol. Let M = X and interpret
<p as the relation given on X.

Let o be the L-sentence
Va(zr <o 2)AVz, y(z <o yAy <o = — x = y)AVz,y, 2(z <o YAy <o 2z = x <o 2)AVz,y(r <o yVy <o 7).
Then, M = o if and only if (X, <) is a linear order.

4. T C X2 is the graph of a surjective function from X to X.

Let L = {T'y} the language where T'y is a binary relation symbol. Let M = X and we interpret I'y as
T.

Let o be the L-sentence
Va3yTo(x,y) AVaVy,y' (To(z,y) ATo(z,y") =y =9") AVyFalo(z,y).

The first and second part describe that I" is the graph of a function: each x € X has one and only one
image. The third part describes that this function is surjective.
5. Given a field K, the statement is ’every injective polynomial map from K to K is surjective’.

Let L = {Iy, So}, where I and S are unary relation symbols. Let M be the set of polynomial maps
from K to K and let I be the subset of M of all injective maps and S be the subset of M of all
surjective maps. We let I} := I and S} := S.

Let o be the L-sentence
Va(Io(x) = So(z)).

Then M = o if and only if every injective polynomial map from K to K is surjective.

6. Given a field K, the statement is the polynomial ag + a1 X + as X? + a3 X? is irreducible over K.

Let L = {ao, a1, as, ag}Uerg, where aqg, ..., ag are constant symbols. Let M = K naturally interpreted
as an Lyng-structure and let a; be interpreted as the i-th coefficient of the given polynomial.

Let o be the L-sentence
(a1 #0ANaz=0Aa3=0)V ((az #0Vas #0) AVa(ag + a1z + azx® + azz® # 0)).

Since the given polynomial has degree at most 3, it is irreducible if and only if it has degree 1 or it
has degree 2 or 3 and has no roots in K.

7. Through every two distinct points there is exactly one straight line.

Let L = {P, L, €}, where P, L are unary relation symbols and € is a binary relation symbol. Let M
be a set of points and lines, where we interpret P(z) as ’z is a point’ and L(y) as 'y is a line’ and
x € y as 'z is a point on the line y’, if x is a point and y is a line.

Let o be the L-sentence
Vo, o' (P(x) NP YA # 2" — Fy(Lly) Az eyna eyAVY (L) Az ey A’ ey —y=1))).

Then M [ o if and only if there is one line through every two distinct points and this line is uniquely
determined.

Exercise 3
Let M be an L-structure and N an L-substructure of M.

1. Claim. The inclusion map i : N — M is an L-embedding.

Proof. Let ¢ be a constant symbol. Then, i(c"V) = ¢V = ¢ since N is a substructure. Let f be a
function symbol and @ € N™/. Then, i(f¥(a)) = f¥(a) = fM(a) = fM(i(a)) since f¥ = fM|y. Let
7 be a relation symbol and @ € N™ . Since rV = rM N N we have vV (a) & rM(a) & rM(i(a)), so
1 is an L-morphism and an L-embedding.



2. Claim. If p(z1,...,z,) is a quantifier-free formula and (a1, ..., a,) an n-tuple in N, then
N ': 90(&1’ ) an) <M }: (p(ah ~'~7an)'

Proof. By induction on c¢(y).

If ¢ is an atomic formula, it is of the form r(¢q,...,t,,) for a relation symbol r and terms ty,...,t,.
Then

N E (a1, ...,an) & (Y (a),...tN (@) e vV o M (a),....tM(a)) e ™ & M E p(ay, ..., an),

where we use that %V (a) = t™(a) for any term ¢ (since the constants are interpreted the same way and
the interpretation of a function in NV is the restriction of the interpretation in M) and rV = rM 0 N7,

If ¢ is of the form — or ¥ A s, the claim is clear by induction hypothesis. Since ¢ is quantifier-free,
these are all cases.

3. Claim. If p(z1,...,%n, Y1, -, Ym) is & quantifier-free formula and @ an m-tuple in N, then
N E 3z, ., oz, ooy 2p,a) = M | 321, . zq0(21, .oy Tn, Q).

The converse is not true.
Proof. Let N | Jzy,...,zpp(21, ..., 2n,a). By definition, there are b1,...,b, € N such that N |

©(b,a). By 2., this implies M = ¢(b,a), so M |= 3x1, ..., 2y@(x1, ..., T, @).

For the converse, let L = L,;ny and M = R and N = 7Z with their usual interpretations. Then,
M E3z(z2 =1+1), but N £ Jz(22 =1+ 1).

4. Claim. If ¢(x1, ..., Tn, Y1, .-, Ym) i & quantifier-free formula and @ an m-tuple in N, then

M EVz, . xqo(1, oy @n,a) = N EVEy, o Xnp(T1, .oy T,y Q).

Proof. Let b € N* C M™. Then M [ ¢(b,a) by assumption, so by 2. we have N |= ¢(b,a). Since b
was arbitrary, we conclude N | Vaq, ..., 2p0(x1, ..., Tpn, @).

Also here, the converse does not hold; with notations as in 3., we have N |= Va (2% # 1+ 1), but
M FEVz(a® #£141).

Exercise 4

Claim. Every L-formula is logically equivalent to a prenex one.
Proof. Let ¢ be an L-formula. Proof by induction on ¢(¢p).
If  is an atomic formula, then ¢ is already prenex.

Let ¢ be of the form —). By induction hypothesis, ¢ is logically equivalent to a prenex formula 1)’
By induction on the number of quantifiers, we show that then —) is logically equivalent to a prenex
formula. If there are no quantifiers in 1)/, we are done. Otherwise, let 1)’ be of the form Qzv”, where Q
is a quantifier. Then, ¢’ is =Qxv", which is logically equivalent to QVz—)", where QV is V if Q is 3
and vice versa. Since —t” has one quantifier less than 1/, by induction hypothesis it follows that —t) is
logically equivalent to a prenex formula.

Let ¢ be of the form v, A 3. By induction hypothesis, i1 and v are logically equivalent to prenex
formulas 1] respectively 5. Possibly after renaming variables we can assume that the bound variables
in 9| and 1} are distinct from each other. Again by induction on the number of quantifiers in v} plus
b, we can show that 9] A ¢} is logically equivalent to a prenex formula: Let 1} be Qzv] and let v
be Q'z'vY. Then ) A is Qi) A Q'z'+Y, which is logically equivalent to QxzQ’z' (] A ¥Y) and by
induction hypothesis, ¥{ A 94 is logically equivalent to a prenex formula. Therefore, also 1 is logically
equivalent to a prenex formula.

If o is Jxep, then 1 is logically equivalent to a prenex formula ', so ¢ is logically equivalent to Jxv)’,
which is prenex.



