
Model theory
3. Formal proofs (correction)

Exercise 1

Note that f2
A = fA holds for every sentential formula A, since 02 = 0 and 12 = 1.

Claim 1.1 For any sentential formulas A, B and C, one has

fA∨B = fA + fB − fA · fB, (1)

fA→B = 1− fA + fA · fB, (2)

fA↔B = 1− |fA − fB|. (3)

Proof. A∨B is by definition the sentential formula ¬(¬A∧¬B). Using the inductive definition of the
truth function, one has

fA∨B = 1− (1− fA)(1− fB) = fA + fB − fA · fB.

A→ B is by definition the sentential formula B ∨ ¬A so, by (1), one has

fA→B = fB + (1− fA)− fB · (1− fA) = 1− fA + fA · fB.

A↔ B is by definition A→ B ∧B → A, so

fA↔B = (1− fA + fA · fB) · (1− fB + fA · fB)
= 1− fA − fB + 2fA · fB

= 1− f2
A − f2

B + 2fA · fB

= 1− (fA − fB)2.

As (fA − fB) equals either 0, 1, or −1, one has (fA − fB)2 = |fA − fB|.

Claim 1.2 For any sentential formulas A, B and C, writting D, E, F , G and H for the sentential
formulas A ∨ ¬A, A → (B → A), (¬A → A) → A, (A → B) ↔ (¬B → ¬A) and ((A → B) ∧ (A →
(B → C)))→ (A→ C) respectively, one has

fD = fE = fF = fG = fH = 1,

hence D,E, F,G and H are tautologies.

Proof. This is a direct application of Claim 1.1.

Claim 1.3 Let A(a1, . . . , an) be a sentential formula in sentential variables a1, . . . , an. Let L be a
language, ϕ1(x̄), . . . , ϕn(x̄) L-formulas. For all L-structure M and all ā in M , one has

M |= A(ϕ1, . . . , ϕn)(ā) ⇐⇒ fA(ϕM
1 (ā), . . . , ϕM

n (ā)) = 1,

and every tautology is universally true, but ∀x(x = x) is a universally true sentence that is not a
tautology.
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Proof. By induction on the complexity of A. If c(A) = 0, A is a sentential variable ai for some
1 6 i 6 n, so A(ϕ1, . . . , ϕn) is the formula ϕi, and fA(ϕM

1 (ā), . . . , ϕM
n (ā)) equals ϕM

i (ā). One has

M |= A(ϕ1, . . . , ϕn)(ā) ⇐⇒ M |= ϕi(ā) ⇐⇒ ϕM
i (ā) = 1 ⇐⇒ fA(ϕM

1 (ā), . . . , ϕM
n (ā)) = 1.

If A is B ∧C, then c(B) < c(A) and c(C) < c(A) and one has fA = fB · fC so

M |= A(ϕ1, . . . , ϕn)(ā) ⇐⇒ M |= B(ϕ1, . . . , ϕn)(ā) and M |= C(ϕ1, . . . , ϕn)(ā)
⇐⇒ fB(ϕM

1 (ā), . . . , ϕM
n (ā)) = 1 and fC(ϕM

1 (ā), . . . , ϕM
n (ā)) = 1

⇐⇒ (fB · fC)(ϕM
1 (ā), . . . , ϕM

n (ā)) = 1
⇐⇒ fA(ϕM

1 (ā), . . . , ϕM
n (ā)) = 1.

If A is ¬B, then one has c(B) < c(A) and fA = 1− fB so

M |= A(ϕM
1 (ā), . . . , ϕM

n (ā)) ⇐⇒ M |= (¬B)(ϕ1, . . . , ϕn)(ā)
⇐⇒ M |= ¬

(
B(ϕ1, . . . , ϕn)

)
(ā)

⇐⇒ M 6|= B(ϕ1, . . . , ϕn)(ā)
⇐⇒ fB(ϕM

1 (ā), . . . , ϕM
n (ā)) = 0

⇐⇒ (1− fB)(ϕM
1 (ā), . . . , ϕM

n (ā)) = 1
⇐⇒ fA(ϕM

1 (ā), . . . , ϕM
n (ā)) = 1.

This shows in particular that if ϕ(x1, . . . , xn) is an L-tautology, then M satisfies ϕ(ā) for every ā in
Mn, so ϕ is universally true. Conversely the sentence ∀x(x = x) is a logical axiom hence universally
true. If it is of the form A(ϕ1, . . . , ϕn) for some sentential formula A, then A is either a sentential
variable or the negation of a sentential variable and, in either case, A is not a tautology.

Exercise 2

Let ϕ1, . . . , ϕn, ϕ and ψ be formulas, Λ a set of formulas.

Claim 2.1 If Λ ` {ϕ1, . . . , ϕn}, then Λ ` ϕ1 ∧ · · · ∧ ϕn.

Proof. Note that ϕ1 ∧ (ϕ2 ∧ ϕ3) and (ϕ1 ∧ ϕ2) ∧ ϕ3 are not the same formulas. However, since
A ∧ (B ∧ C)→ (A ∧B) ∧ C and (A ∧B) ∧ C → A ∧ (B ∧ C) are tautologies, proving ϕ1 ∧ (ϕ2 ∧ ϕ3)
is equivalent to proving (ϕ1 ∧ ϕ2) ∧ ϕ3, so the claim ` ϕ1 ∧ · · · ∧ ϕn is not ambiguous. We prove the
claim by induction on n. If n = 1, the claim is obvious. If n = 2, let (α1, . . . , αk, ϕ1) be a proof of
ϕ1 in Λ, and (β1, . . . , β`, ϕ2) a proof of ϕ2 in Λ. Then(

α1, . . . , αk, ϕ1, β1, . . . , β`, ϕ2, ϕ1 → (ϕ2 → (ϕ1 ∧ ϕ2)), ϕ2 → (ϕ1 ∧ ϕ2), ϕ1 ∧ ϕ2
)

is a proof of ϕ1∧ϕ2 in Λ (the last three steps of the proof are obtained by applying the tautology A→
(B → (A∧B)) and modus ponens twice). For the induction step, if Λ proves both ϕ1 ∧ · · · ∧ϕn−1
and ϕn, then it also proves (ϕ1 ∧ · · · ∧ ϕn−1) ∧ ϕn by the case n = 2.

Claim 2.2 Λ ` ϕ→ ψ if and only if Λ ` ¬ψ → ¬ϕ.

Proof. If (α1, . . . , αk, ϕ→ ψ) is proof of ϕ→ ψ in Λ, then(
α1, . . . , αk, ϕ→ ψ, (ϕ→ ψ)→ (¬ψ → ¬ϕ),¬ψ → ¬ϕ

)
is a proof of ¬ψ → ¬ϕ (where the last but one step is obtained using the tautology (A → B) →
(¬B → ¬A), and the last step by modus ponens). The reverse direction is similar using the tautolgy
(¬B → ¬A)→ (A→ B) instead.
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Claim 2.3 ` ∀x1ϕ → ϕ((t, x2, . . . , xn)) where ϕ(x1, . . . , xn) is a formula, t is a term and the terms
(t, x2, . . . , xn) are compatible with ϕ.

Proof. This is the contrapositive of the existential quantifier axiom. Let Λ be any set of formulas. As
Λ proves ¬ϕ((t, x2, . . . , xn))→ ∃x1¬ϕ (this is an ∃-axiom), it also proves

¬∃x1¬ϕ→ ¬¬ϕ((t, x2, . . . , xn))

by Claim 2.2, that is
∀x1ϕ→ ¬¬ϕ((t, x2, . . . , xn)).

Using the tautologies ¬¬A ↔ A and
(
(A → B) ∧ (B ↔ C)

)
→ (A → C), and applying Claim 2.1, it

follows that Λ proves
∀x1ϕ→ ϕ((t, x2, . . . , xn)).

Claim 2.4 Λ ` ϕ if and only if Λ ` ∀xϕ.

Proof. Assume that Λ proves ∀xϕ for a formula ϕ(x1, . . . , xn) and a variable x. Either x is among
x1, . . . , xn, say x = x1, or it is not. In the last case, increasing n if necessary, one can view ϕ as a
formula in variables (x1, . . . , xn) with x = x1, and in both cases, the terms (x1, . . . , xn) are compatible
with ϕ. Then by Claim 2.3 and modus ponens, Λ also proves ϕ((x1, . . . , xn)), which is precisely ϕ.
Conversely, if Λ proves ϕ, let (α1, . . . , αk, ϕ) be a proof. Then(

α1, . . . , αk, ϕ, σ, ϕ→ (σ → ϕ), σ → ϕ, σ → ∀xϕ,∀xϕ
)

is a proof of ∀xϕ (where σ is any logical axiom that is a sentence and where the 4 last steps of the
proof are obtained using the tautology A → (B → A), modus ponens, the generalisation rule, and
modus ponens).

Claim 2.5 If x has no free occurence in ψ and Λ ` ϕ→ ψ, then Λ ` ∃xϕ→ ψ.

Proof. This is the contrapositive of the generalisation rule. If Λ proves ϕ→ ψ, then it proves ¬ψ → ¬ϕ
by Claim 2.2. As x does not have any free occurence in ¬ψ, by the generalisation rule, Λ proves
¬ψ → ∀x¬ϕ, that is ¬ψ → ¬∃x¬¬ϕ, hence ∃x¬¬ϕ → ψ by Claim 2.2 again. Using the axiom
∃x¬¬ϕ ↔ ∃xϕ and the tautolgy ((A ↔ B) ∧ B → C) → A → C), one deduces that Λ proves
∃xϕ→ ψ.

Claim 2.6 Let ϕ(x) and ψ(x) be formulas. Then ` ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ).

Proof. Note that the above formula is of the form A → (B → C), that is C ∨ ¬ B ∨ ¬A, that is
C ∨ ¬(¬¬A ∧ ¬¬B) hence (¬¬A ∧ ¬¬B)→ C. It follows that

(
(A ∧B)→ C

)
→
(
A→ (B → C)

)
is

a tautology, so it suffices to show

` (∀x(ϕ→ ψ) ∧ ∀xϕ)→ ∀xψ. (4)

Let σ be the sentence
(
∀x(ϕ→ ψ)∧∀xϕ)

)
, then {σ} proves ∀x(ϕ→ ψ) and ∀xϕ (using the tautology

A ∧B → A), hence ϕ→ ψ and ϕ by Claim 2.4, hence ψ by modus ponens, hence ∀xψ by Claim 2.4.
We have shown

{σ} ` ∀xψ.

By the Deduction Lemma, it follows that ` σ → ∀xψ.
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Exercise 3

Claim 3.1 Let Λ be a set of formulas, ϕ and ψ formulas. Λ ` ϕ → ψ implies Λ ∪ {ϕ} ` ψ, but
Λ ∪ {ϕ} ` ψ does not imply Λ ` ϕ→ ψ.

Proof. If Λ proves ϕ→ ψ, then so does Λ∪{ϕ}, so Λ∪{ϕ} proves ψ by modus ponens. Conversely,
let Λ be the empty set, ϕ the formula x = c and ψ the formula ∀x(x = c) where c is a constant symbol.
One has {x = c} ` ∀x(x = c) by Claim 2.2. If one had ` x = c→ ∀x(x = c), then x = c→ ∀x(x = c)
would be universally true (by the Theorem saying that a syntactic consequence is a semantic one).
But the latter formula does not hold in the structure {0, 1} having two distinct elements 0 and 1 where
c is interpreted by 0.

Exercise 4

Claim 4.1 N×N is countable. It follows that

0. If there is an injective map from A to B and B is countable, then A is countable.

1. If A1, . . . , An are countable, then A1 × · · · ×An is countable.

2. If {An : n > 1} is a countable set of countable (not necess. disjoint) sets,
⋃

n>1An is countable.

Proof. The map f from N × N to N mapping (n,m) to 2n3m is injective by unicity of the prime
factorisation.

0. If g is an injective map from A to B and h an injective map from B to N, then h ◦ g is an
injective map from A to N.

1. It is enough to show it for n = 2, as the result for all n follows by a straightforeward induction
on n. If f : A1 → N, g : A2 → N and i : N×N → N are injective maps, then (x, y)→ i(f(x), g(y))
is an injective map from A1 ×A2 to N.

2. Let fn : An → N be an injective map for every n > 1. For every x ∈
⋃

n>1An, let m(x) > 1
be the least natural number such that x ∈ Am (there can be several ones since the sets An are not
assumed to be disjoint, and there is a least one as N is well-ordered). Then the map from

⋃
n>1An to

N×N mapping x to (m(x), fm(x)) is an injective map, so
⋃

n>1An is countable by 0.

Claim 4.2 Let A be a countable alphabet. The set of finite words in this alphabet (i.e. of finite
ordered subsets of A, or of finite tuples of A) is countable.

Proof. For every natural number n > 1, the set of words of length n is precisely An, and
⋃

n>1A
n is

countable by the above claim.

Claim 4.3 If L is a countable language and V a countable set of variables, then the set of L-formulas
using variables in V is countable.

Proof. An L-formula is a word in the alphabet A = L ∪ V ∪ {=,∧,¬, ∃}, which is a countable set by
Claim 4.1.2, so the set of L-formulas is countable by Claim 4.2. One could alternatively have taken
an injective map f : A→ N, an infinite set of pairwise distinct primes {pn : n > 1} and consider the
function mapping a formula (a1, . . . , an) to the product pf(a1)

1 · · · pf(an)
n .
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