Model theory

3. Formal proofs (correction)

Exercise 1

Note that f% = fa holds for every sentential formula A, since 0> = 0 and 12 = 1.

Claim 1.1 For any sentential formulas A, B and C, one has

favB=fa+fB—fa [B, (1)
fasB=1—fa+ fa- fB, (2)
facs =1—|fa— fB] (3)

Proof. AV B is by definition the sentential formula =(=A A —B). Using the inductive definition of the
truth function, one has

fave=1— 1~ fa)l—fB)=fa+ [~ fa-fB.
A — B is by definition the sentential formula BV = A so, by (1), one has
fasp=fp+ (A —fa)—fe-(1—fa)=1—fa+ fa-fB.
A < B is by definition A - BA B — A, so
faop= 0= fa+fa-fB)- (1= fe+ fa-fB)

=1—fa—fe+2fa-fB

=1—fi-fE+2fa-fB

=1—(fa—fp)*
As (fa — fB) equals either 0, 1, or —1, one has (f1 — f)% = |fa — f5|. O

Claim 1.2 For any sentential formulas A, B and C, writting D, E, F', G and H for the sentential
formulas AV -4, A—- (B—A),("rA—A) - A (A= B) < (-B— -A)and (A— B)A (A —
(B — ())) — (A — C) respectively, one has

fo=fe=fr=fc=/fu=1,
hence D, E, F,G and H are tautologies.
Proof. This is a direct application of Claim 1.1. O

Claim 1.3 Let A(ay,...,a,) be a sentential formula in sentential variables ay,...,a,. Let L be a
language, ¢1(Z), ..., on(z) L-formulas. For all L-structure M and all a in M, one has

M ': A(@lwua@n)(&) — fA(SO{M(&)w"?SOi\L/[(&)) =1,

and every tautology is universally true, but Va(z = x) is a universally true sentence that is not a
tautology.



Proof. By induction on the complexity of A. If c(A) = 0, A is a sentential variable a; for some
1<i<n,s0 A(p1,...,pn) is the formula o;, and fa(p}(a),..., 0 (a)) equals ¢M(a). One has

M E A1, 90)(@) = MEwi@) < ¢l'@) =1 < fa(el'(@),...,9) (@) =1.

If A is BAC, then ¢(B) < ¢(A) and ¢(C) < ¢(A) and one has f4 = fp - fo so

M= A(er,...,on)(a) <= M = B(¢1,...,¢0n)(a) and M = C(p1,...,0n)(a)
= fBle)'@),....on (@) = L and fe(p'(@),.... ¢y (@) =1
= (fp-fo)(pl'@),...,op' (@) =1
= falpl@),..., 00 (@) = 1.
If A is =B, then one has ¢(B) < ¢(A) and f4 =1— fg so

M = A(pl" (@), ..., ¢ (@) <= M| (_‘B)(Sola---790n)(_)
M):_'<B((P17-- y P n))
M = B(p1, - ¢n)(a)
fe(et @), ..., (@)
(1= fB) (@), .-, o (@)) =1
fa(et' @), ..., onl (@) =1

This shows in particular that if ¢(z1,...,z,) is an L-tautology, then M satisfies ¢(a) for every a in
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M?™, so ¢ is universally true. Conversely the sentence Vz(z = z) is a logical axiom hence universally
true. If it is of the form A(p1,...,¢,) for some sentential formula A, then A is either a sentential
variable or the negation of a sentential variable and, in either case, A is not a tautology. O

Exercise 2

Let 1, ...,¢n,» and 9 be formulas, A a set of formulas.
Claim 2.1 If AF{p1,...,0n}, then AF @1 A+ A .

Proof. Note that ¢1 A (p2 A v3) and (¢1 A p2) A p3 are not the same formulas. However, since
AN(BANC) = (ANB)ANC and (ANB)ANC — AN (B AC) are tautologies, proving ¢1 A (w2 A ¢3)
is equivalent to proving (¢1 A p2) A @3, so the claim F ¢1 A -+ A ¢, is not ambiguous. We prove the
claim by induction on n. If n = 1, the claim is obvious. If n = 2, let (a4, ..., ax, p1) be a proof of
1 in A, and (B, ..., Be, p2) a proof of o in A. Then

(041, s Oy 1, B 5 B 02,01 = (02 = (91 Aw2)) 02 = (91 Aw2), o1 A 902)

is a proof of ¢ Ayg in A (the last three steps of the proof are obtained by applying the tautology A —
(B — (A A B)) and modus ponens twice). For the induction step, if A proves both o1 A~ A@p_1
and @, then it also proves (¢1 A -+ A @p—1) A @, by the case n = 2. O

Claim 2.2 A+ ¢ — @ if and only if A F —¢ — —¢.
Proof. If (aq,...,ap,p — 1) is proof of ¢ — 1 in A, then
(a1, s ans 0 = 1, (0 = B) = (0 = =), ) > )

is a proof of 1) — —p (where the last but one step is obtained using the tautology (A — B) —
(=B — —A), and the last step by modus ponens). The reverse direction is similar using the tautolgy
(-B — —A) — (A — B) instead. O



Claim 2.3 F Vzi1p — o((t,z2,...,2,)) where @(z1,...,2,) is a formula, ¢ is a term and the terms
(t,z2,...,x,) are compatible with .

Proof. This is the contrapositive of the existential quantifier axiom. Let A be any set of formulas. As
A proves —p((t,x2,...,2z,)) — Jr1¢ (this is an F-axiom), it also proves

—Jr1-@ — me((t, x2, ..., xn))

by Claim 2.2, that is

V1o — —o((t, e, ..., xn)).
Using the tautologies =—A <+ A and ((A — B) A (B <> C)) — (A — C), and applying Claim 2.1, it
follows that A proves

Veio — o((t,ze,...,2zp)). O

Claim 2.4 AF ¢ if and only if A - Vze.

Proof. Assume that A proves Vxgp for a formula ¢(x1,...,z,) and a variable x. Either = is among
X1, ...,Ty, SAY & = x1, or it is not. In the last case, increasing n if necessary, one can view ¢ as a
formula in variables (x1,...,z,) with x = x1, and in both cases, the terms (x1, ..., z,) are compatible
with ¢. Then by Claim 2.3 and modus ponens, A also proves ¢((z1,...,%,)), which is precisely .
Conversely, if A proves ¢, let (aq,...,ax, ) be a proof. Then

(a1, 0 ,0,0 = (0= 9),0 = 9,0 = Yap, Yap)

is a proof of Vxy (where o is any logical axiom that is a sentence and where the 4 last steps of the
proof are obtained using the tautology A — (B — A), modus ponens, the generalisation rule, and
modus ponens). O

Claim 2.5 If x has no free occurence in ¥ and A F ¢ — 1, then A F Jxp — .

Proof. This is the contrapositive of the generalisation rule. If A proves ¢ — 9, then it proves =@ — —¢
by Claim 2.2. As x does not have any free occurence in —), by the generalisation rule, A proves
- — Va—p, that is -¢ — —-Jz——p, hence dz——p — ¢ by Claim 2.2 again. Using the axiom
dr——¢ <> Jzre and the tautolgy ((A < B)AB — C) - A — (), one deduces that A proves
Jxp — 1. O

Claim 2.6 Let ¢(z) and ¢(z) be formulas. Then - Vx(¢ — ¢) = (Vrp — Vo).

Proof. Note that the above formula is of the form A — (B — C), that is C V = BV —A, that is
C'V —=(—==A A —-=B) hence (——AAN—--B) — C. It follows that ((A A B) — C’) — <A — (B — C’)) is
a tautology, so it suffices to show

F (Va(p — ) AVxp) — V. (4)

Let o be the sentence (Vz(¢ — 1) AVayp)), then {o} proves Vz(yp — ¢) and Vzp (using the tautology
ANB — A), hence ¢ — 1 and ¢ by Claim 2.4, hence ¥ by modus ponens, hence Yz by Claim 2.4.
We have shown

{o} FVaxi.
By the Deduction Lemma, it follows that - o — Vx. O



Exercise 3

Claim 3.1 Let A be a set of formulas, ¢ and ¢ formulas. A - ¢ — 9 implies A U {¢} F 9, but
AU {p} 1 does not imply A F ¢ — 1.

Proof. If A proves ¢ — 1, then so does AU{p}, so AU{¢} proves 1) by modus ponens. Conversely,
let A be the empty set, ¢ the formula z = ¢ and 1 the formula Va(x = ¢) where ¢ is a constant symbol.
One has {x = ¢} F Vz(x = ¢) by Claim 2.2. If one had F z = ¢ — Vz(x = ¢), then . = ¢ — Va(z = ¢)
would be universally true (by the Theorem saying that a syntactic consequence is a semantic one).
But the latter formula does not hold in the structure {0, 1} having two distinct elements 0 and 1 where
c is interpreted by O. O

Exercise 4

Claim 4.1 N x N is countable. It follows that
0. If there is an injective map from A to B and B is countable, then A is countable.
1. If Aq,..., A, are countable, then A; x --- x A, is countable.
2. If {A, :n > 1} is a countable set of countable (not necess. disjoint) sets, |J,,; A, is countable.

Proof. The map f from N x N to N mapping (n,m) to 2"3™ is injective by unicity of the prime
factorisation.

0. If g is an injective map from A to B and h an injective map from B to N, then h o g is an
injective map from A to N.

1. It is enough to show it for n = 2, as the result for all n follows by a straightforeward induction
onn. If f: A =N, g: Ay - N and i: N x N — N are injective maps, then (z,y) — i(f(z),9(y))
is an injective map from A; x As to N.

2. Let f, : A, — N be an injective map for every n > 1. For every = € U,5; Ay, let m(z) > 1
be the least natural number such that = € A, (there can be several ones since the sets A, are not
assumed to be disjoint, and there is a least one as N is well-ordered). Then the map from U,,»; Ay to
N x N mapping = to (m(z), fm(r)) is an injective map, so U, An is countable by 0. O

Claim 4.2 Let A be a countable alphabet. The set of finite words in this alphabet (i.e. of finite
ordered subsets of A, or of finite tuples of A) is countable.

Proof. For every natural number n > 1, the set of words of length n is precisely A", and U, A" is
countable by the above claim. O

Claim 4.3 If L is a countable language and V' a countable set of variables, then the set of L-formulas
using variables in V' is countable.

Proof. An L-formula is a word in the alphabet A = LUV U{=, A, -, 3}, which is a countable set by
Claim 4.1.2, so the set of L-formulas is countable by Claim 4.2. One could alternatively have taken
an injective map f : A — N, an infinite set of pairwise distinct primes {p,, : n > 1} and consider the

function mapping a formula (aq,...,a,) to the product p{(al) x -pﬁ(a"). O



