Model theory 3. Formal proofs (correction)

Exercise 1

Note that $f_A^2 = f_A$ holds for every sentential formula A, since $0^2 = 0$ and $1^2 = 1$. Claim 1.1 For any sentential formulas A, B and C, one has

$$f_{A\vee B} = f_A + f_B - f_A \cdot f_B,\tag{1}$$

$$f_{A \to B} = 1 - f_A + f_A \cdot f_B, \tag{2}$$

$$f_{A\leftrightarrow B} = 1 - |f_A - f_B|. \tag{3}$$

Proof. $A \vee B$ is by definition the sentential formula $\neg(\neg A \land \neg B)$. Using the inductive definition of the truth function, one has

$$f_{A \lor B} = 1 - (1 - f_A)(1 - f_B) = f_A + f_B - f_A \cdot f_B.$$

 $A \to B$ is by definition the sentential formula $B \vee \neg A$ so, by (1), one has

$$f_{A\to B} = f_B + (1 - f_A) - f_B \cdot (1 - f_A) = 1 - f_A + f_A \cdot f_B.$$

 $A \leftrightarrow B$ is by definition $A \to B \land B \to A$, so

$$f_{A\leftrightarrow B} = (1 - f_A + f_A \cdot f_B) \cdot (1 - f_B + f_A \cdot f_B)$$

= 1 - f_A - f_B + 2f_A \cdot f_B
= 1 - f_A^2 - f_B^2 + 2f_A \cdot f_B
= 1 - (f_A - f_B)^2.

As $(f_A - f_B)$ equals either 0, 1, or -1, one has $(f_A - f_B)^2 = |f_A - f_B|$.

Claim 1.2 For any sentential formulas A, B and C, writting D, E, F, G and H for the sentential formulas $A \lor \neg A$, $A \to (B \to A)$, $(\neg A \to A) \to A$, $(A \to B) \leftrightarrow (\neg B \to \neg A)$ and $((A \to B) \land (A \to (B \to C))) \to (A \to C)$ respectively, one has

$$f_D = f_E = f_F = f_G = f_H = 1$$

hence D, E, F, G and H are tautologies.

Proof. This is a direct application of Claim 1.1.

Claim 1.3 Let $A(a_1, \ldots, a_n)$ be a sentential formula in sentential variables a_1, \ldots, a_n . Let L be a language, $\varphi_1(\bar{x}), \ldots, \varphi_n(\bar{x})$ *L*-formulas. For all *L*-structure M and all \bar{a} in M, one has

$$M \models A(\varphi_1, \dots, \varphi_n)(\bar{a}) \iff f_A(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1,$$

and every tautology is universally true, but $\forall x(x = x)$ is a universally true sentence that is not a tautology.

Proof. By induction on the complexity of A. If $\mathbf{c}(\mathbf{A}) = \mathbf{0}$, A is a sentential variable a_i for some $1 \leq i \leq n$, so $A(\varphi_1, \ldots, \varphi_n)$ is the formula φ_i , and $f_A(\varphi_1^M(\bar{a}), \ldots, \varphi_n^M(\bar{a}))$ equals $\varphi_i^M(\bar{a})$. One has

$$M \models A(\varphi_1, \dots, \varphi_n)(\bar{a}) \iff M \models \varphi_i(\bar{a}) \iff \varphi_i^M(\bar{a}) = 1 \iff f_A(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1.$$

If A is $\mathbf{B} \wedge \mathbf{C}$, then c(B) < c(A) and c(C) < c(A) and one has $f_A = f_B \cdot f_C$ so

$$M \models A(\varphi_1, \dots, \varphi_n)(\bar{a}) \iff M \models B(\varphi_1, \dots, \varphi_n)(\bar{a}) \text{ and } M \models C(\varphi_1, \dots, \varphi_n)(\bar{a})$$
$$\iff f_B(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1 \text{ and } f_C(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1$$
$$\iff (f_B \cdot f_C)(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1$$
$$\iff f_A(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1.$$

If A is \neg B, then one has c(B) < c(A) and $f_A = 1 - f_B$ so

$$M \models A(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) \iff M \models (\neg B)(\varphi_1, \dots, \varphi_n)(\bar{a})$$
$$\iff M \models \neg (B(\varphi_1, \dots, \varphi_n))(\bar{a})$$
$$\iff M \not\models B(\varphi_1, \dots, \varphi_n)(\bar{a})$$
$$\iff f_B(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 0$$
$$\iff (1 - f_B)(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1$$
$$\iff f_A(\varphi_1^M(\bar{a}), \dots, \varphi_n^M(\bar{a})) = 1.$$

This shows in particular that if $\varphi(x_1, \ldots, x_n)$ is an *L*-tautology, then *M* satisfies $\varphi(\bar{a})$ for every \bar{a} in M^n , so φ is universally true. Conversely the sentence $\forall x(x = x)$ is a logical axiom hence universally true. If it is of the form $A(\varphi_1, \ldots, \varphi_n)$ for some sentential formula *A*, then *A* is either a sentential variable or the negation of a sentential variable and, in either case, *A* is not a tautology.

Exercise 2

Let $\varphi_1, \ldots, \varphi_n, \varphi$ and ψ be formulas, Λ a set of formulas.

Claim 2.1 If $\Lambda \vdash \{\varphi_1, \ldots, \varphi_n\}$, then $\Lambda \vdash \varphi_1 \land \cdots \land \varphi_n$.

Proof. Note that $\varphi_1 \wedge (\varphi_2 \wedge \varphi_3)$ and $(\varphi_1 \wedge \varphi_2) \wedge \varphi_3$ are not the same formulas. However, since $A \wedge (B \wedge C) \rightarrow (A \wedge B) \wedge C$ and $(A \wedge B) \wedge C \rightarrow A \wedge (B \wedge C)$ are tautologies, proving $\varphi_1 \wedge (\varphi_2 \wedge \varphi_3)$ is equivalent to proving $(\varphi_1 \wedge \varphi_2) \wedge \varphi_3$, so the claim $\vdash \varphi_1 \wedge \cdots \wedge \varphi_n$ is not ambiguous. We prove the claim by induction on n. If $\mathbf{n} = \mathbf{1}$, the claim is obvious. If $\mathbf{n} = \mathbf{2}$, let $(\alpha_1, \ldots, \alpha_k, \varphi_1)$ be a proof of φ_1 in Λ , and $(\beta_1, \ldots, \beta_\ell, \varphi_2)$ a proof of φ_2 in Λ . Then

$$\left(\alpha_1,\ldots,\alpha_k,\varphi_1,\beta_1,\ldots,\beta_\ell,\varphi_2,\varphi_1\to(\varphi_2\to(\varphi_1\land\varphi_2)),\varphi_2\to(\varphi_1\land\varphi_2),\varphi_1\land\varphi_2\right)$$

is a proof of $\varphi_1 \wedge \varphi_2$ in Λ (the last three steps of the proof are obtained by applying the tautology $A \rightarrow (B \rightarrow (A \wedge B))$ and modus ponens twice). For the induction step, if Λ proves both $\varphi_1 \wedge \cdots \wedge \varphi_{n-1}$ and φ_n , then it also proves $(\varphi_1 \wedge \cdots \wedge \varphi_{n-1}) \wedge \varphi_n$ by the case n = 2.

Claim 2.2 $\Lambda \vdash \varphi \rightarrow \psi$ if and only if $\Lambda \vdash \neg \psi \rightarrow \neg \varphi$.

Proof. If $(\alpha_1, \ldots, \alpha_k, \varphi \to \psi)$ is proof of $\varphi \to \psi$ in Λ , then

$$(\alpha_1, \ldots, \alpha_k, \varphi \to \psi, (\varphi \to \psi) \to (\neg \psi \to \neg \varphi), \neg \psi \to \neg \varphi)$$

is a proof of $\neg \psi \rightarrow \neg \varphi$ (where the last but one step is obtained using the tautology $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$, and the last step by modus ponens). The reverse direction is similar using the tautology $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$ instead. \Box

Claim 2.3 $\vdash \forall x_1 \varphi \rightarrow \varphi((t, x_2, \dots, x_n))$ where $\varphi(x_1, \dots, x_n)$ is a formula, t is a term and the terms (t, x_2, \dots, x_n) are compatible with φ .

Proof. This is the contrapositive of the existential quantifier axiom. Let Λ be any set of formulas. As Λ proves $\neg \varphi((t, x_2, \ldots, x_n)) \rightarrow \exists x_1 \neg \varphi$ (this is an \exists -axiom), it also proves

$$\neg \exists x_1 \neg \varphi \rightarrow \neg \neg \varphi((t, x_2, \dots, x_n))$$

by Claim 2.2, that is

$$\forall x_1 \varphi \to \neg \neg \varphi((t, x_2, \dots, x_n)).$$

Using the tautologies $\neg \neg A \leftrightarrow A$ and $((A \rightarrow B) \land (B \leftrightarrow C)) \rightarrow (A \rightarrow C)$, and applying Claim 2.1, it follows that Λ proves

$$\forall x_1 \varphi \to \varphi((t, x_2, \dots, x_n)). \quad \Box$$

Claim 2.4 $\Lambda \vdash \varphi$ if and only if $\Lambda \vdash \forall x \varphi$.

Proof. Assume that Λ proves $\forall \mathbf{x}\varphi$ for a formula $\varphi(x_1, \ldots, x_n)$ and a variable x. Either x is among x_1, \ldots, x_n , say $x = x_1$, or it is not. In the last case, increasing n if necessary, one can view φ as a formula in variables (x_1, \ldots, x_n) with $x = x_1$, and in both cases, the terms (x_1, \ldots, x_n) are compatible with φ . Then by Claim 2.3 and modus ponens, Λ also proves $\varphi((x_1, \ldots, x_n))$, which is precisely φ . Conversely, if Λ proves φ , let $(\alpha_1, \ldots, \alpha_k, \varphi)$ be a proof. Then

$$(\alpha_1, \ldots, \alpha_k, \varphi, \sigma, \varphi \to (\sigma \to \varphi), \sigma \to \varphi, \sigma \to \forall x \varphi, \forall x \varphi)$$

is a proof of $\forall x \varphi$ (where σ is any logical axiom that is a **sentence** and where the 4 last steps of the proof are obtained using the tautology $A \to (B \to A)$, modus ponens, the generalisation rule, and modus ponens).

Claim 2.5 If x has no free occurence in ψ and $\Lambda \vdash \varphi \rightarrow \psi$, then $\Lambda \vdash \exists x \varphi \rightarrow \psi$.

Proof. This is the contrapositive of the generalisation rule. If Λ proves $\varphi \to \psi$, then it proves $\neg \psi \to \neg \varphi$ by Claim 2.2. As x does not have any free occurence in $\neg \psi$, by the generalisation rule, Λ proves $\neg \psi \to \forall x \neg \varphi$, that is $\neg \psi \to \neg \exists x \neg \neg \varphi$, hence $\exists x \neg \neg \varphi \to \psi$ by Claim 2.2 again. Using the axiom $\exists x \neg \neg \varphi \leftrightarrow \exists x \varphi$ and the tautolgy $((A \leftrightarrow B) \land B \to C) \to A \to C)$, one deduces that Λ proves $\exists x \varphi \to \psi$.

Claim 2.6 Let $\varphi(x)$ and $\psi(x)$ be formulas. Then $\vdash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$.

Proof. Note that the above formula is of the form $A \to (B \to C)$, that is $C \vee \neg B \vee \neg A$, that is $C \vee \neg (\neg \neg A \wedge \neg \neg B)$ hence $(\neg \neg A \wedge \neg \neg B) \to C$. It follows that $((A \wedge B) \to C) \to (A \to (B \to C))$ is a tautology, so it suffices to show

$$\vdash (\forall x(\varphi \to \psi) \land \forall x\varphi) \to \forall x\psi.$$
(4)

Let σ be the sentence $(\forall x(\varphi \to \psi) \land \forall x\varphi))$, then $\{\sigma\}$ proves $\forall x(\varphi \to \psi)$ and $\forall x\varphi$ (using the tautology $A \land B \to A$), hence $\varphi \to \psi$ and φ by Claim 2.4, hence ψ by modus ponens, hence $\forall x\psi$ by Claim 2.4. We have shown

$$\{\sigma\} \vdash \forall x\psi.$$

By the Deduction Lemma, it follows that $\vdash \sigma \rightarrow \forall x \psi$.

Exercise 3

Claim 3.1 Let Λ be a set of formulas, φ and ψ formulas. $\Lambda \vdash \varphi \rightarrow \psi$ implies $\Lambda \cup \{\varphi\} \vdash \psi$, but $\Lambda \cup \{\varphi\} \vdash \psi$ does not imply $\Lambda \vdash \varphi \rightarrow \psi$.

Proof. If Λ proves $\varphi \to \psi$, then so does $\Lambda \cup \{\varphi\}$, so $\Lambda \cup \{\varphi\}$ proves ψ by modus ponens. Conversely, let Λ be the empty set, φ the formula x = c and ψ the formula $\forall x(x = c)$ where c is a constant symbol. One has $\{x = c\} \vdash \forall x(x = c)$ by Claim 2.2. If one had $\vdash x = c \to \forall x(x = c)$, then $x = c \to \forall x(x = c)$ would be universally true (by the Theorem saying that a syntactic consequence is a semantic one). But the latter formula does not hold in the structure $\{0, 1\}$ having two distinct elements 0 and 1 where c is interpreted by 0.

Exercise 4

Claim 4.1 $N \times N$ is countable. It follows that

- 0. If there is an injective map from A to B and B is countable, then A is countable.
- 1. If A_1, \ldots, A_n are countable, then $A_1 \times \cdots \times A_n$ is countable.
- 2. If $\{A_n : n \ge 1\}$ is a countable set of countable (not necess. disjoint) sets, $\bigcup_{n\ge 1} A_n$ is countable.

Proof. The map f from $\mathbf{N} \times \mathbf{N}$ to \mathbf{N} mapping (n, m) to $2^n 3^m$ is injective by unicity of the prime factorisation.

0. If g is an injective map from A to B and h an injective map from B to N, then $h \circ g$ is an injective map from A to N.

1. It is enough to show it for n = 2, as the result for all n follows by a straightforeward induction on n. If $f : A_1 \to \mathbf{N}$, $g : A_2 \to \mathbf{N}$ and $i : \mathbf{N} \times \mathbf{N} \to \mathbf{N}$ are injective maps, then $(x, y) \to i(f(x), g(y))$ is an injective map from $A_1 \times A_2$ to \mathbf{N} .

2. Let $f_n : A_n \to \mathbf{N}$ be an injective map for every $n \ge 1$. For every $x \in \bigcup_{n\ge 1} A_n$, let $m(x) \ge 1$ be the least natural number such that $x \in A_m$ (there can be several ones since the sets A_n are not assumed to be disjoint, and there is a least one as \mathbf{N} is well-ordered). Then the map from $\bigcup_{n\ge 1} A_n$ to $\mathbf{N} \times \mathbf{N}$ mapping x to $(m(x), f_m(x))$ is an injective map, so $\bigcup_{n\ge 1} A_n$ is countable by 0.

Claim 4.2 Let A be a countable alphabet. The set of finite words in this alphabet (*i.e.* of finite ordered subsets of A, or of finite tuples of A) is countable.

Proof. For every natural number $n \ge 1$, the set of words of length n is precisely A^n , and $\bigcup_{n\ge 1} A^n$ is countable by the above claim.

Claim 4.3 If L is a countable language and V a countable set of variables, then the set of L-formulas using variables in V is countable.

Proof. An *L*-formula is a word in the alphabet $A = L \cup V \cup \{=, \land, \neg, \exists\}$, which is a countable set by Claim 4.1.2, so the set of *L*-formulas is countable by Claim 4.2. One could alternatively have taken an injective map $f : A \to \mathbf{N}$, an infinite set of pairwise distinct primes $\{p_n : n \ge 1\}$ and consider the function mapping a formula (a_1, \ldots, a_n) to the product $p_1^{f(a_1)} \cdots p_n^{f(a_n)}$.