Model theory

4. Cartesian products and reduced products

Exercise 1 (expressing mathematical statements by sentences) For each statement S below, find a suitable language L, an L-structure (M, L^M) and an L-sentence σ such that S is equivalent to $M \models \sigma$.

- 1. Given natural numbers m, n, p, the statement is 'p is a prime number and m and n are coprime'.
- 2. Given a field K with a linear ordering on K, the statement is 'K is an ordered field'.
- 3. Given an ordered field K, the statement is 'every positive element is a square'.
- 4. Given a matrix $A = (a_{11}, a_{12}, a_{21}, a_{12})$ in $M_2(\mathbf{R})$, the statement is 'A is invertible'.
- 5. Given a group G, the statement is 'the centre of G is non-trivial'.

Exercise 2 (satisfaction in a Cartesian product) Let $(M_i)_{i \in I}$ be a family of *L*-structures, $\varphi(x_1, \ldots, x_n)$ an atomic formula and a^1, \ldots, a^n elements of $\prod_{i \in I} M_i$.

- 1. Show that $\prod_{i \in I} M_i$ satisfies $\varphi(a^1, \ldots, a^n)$ if and only if M_i satisfies $\varphi(a^1_i, \ldots, a^n_i)$ for all $i \in I$.
- 2. Does that hold for any formula?
- 3. Show that if $J \subset I$, the restriction map $\prod_{i \in I} M_i \longrightarrow \prod_{i \in J} M_j$ is a morphism.

Exercise 3 (building ultrafilters with prescribed elements) Let I and $J \subset I$ be infinite sets.

- 1. Show that there is a non-principal ultrafilter on I that contains $\{J\}$.
- 2. Is there a non-principal ultrafilter on **N** containing $\{n\mathbf{N} : n \ge 1\}$?
- 3. Under which conditions on a set \mathcal{G} of subsets of I is there a non-principal ultrafilter extending \mathcal{G} ?

Exercise 4 (product reduced by a principal ultrafilter) Let I be a set, $J \subset I$ a subset and \mathcal{F} the principal filter on I generated by the singleton $\{J\}$. Let (M_i) a family of L-structures. Show that the reduced product $\prod_{\mathcal{F}} M_i$ is isomorphic to the Cartesian product $\prod_{i \in I} M_j$.

Exercise 5 (reduced product of rings) Consider **R** with its L_{ring} -structure. The L_{ring} -structure **R**^{**N**} is the natural ring structure on the Cartesian power of **R**. Let \mathcal{F} be a filter on **N**.

- 1. Show that there is an ideal $I_{\mathcal{F}}$ of $\mathbf{R}^{\mathbf{N}}$ such that $\mathbf{R}^{\mathcal{F}}$ is precisely the quotient ring $\mathbf{R}^{\mathbf{N}}/I_{\mathcal{F}}$.
- 2. If \mathcal{F} is not an ultrafilter, show that $\mathbf{R}^{\mathcal{F}}$ is not a field. What can you say about the L_{ring} -theory of $\mathbf{R}^{\mathcal{F}}$, using either 1. or the particular cases where Los' Theorem holds for a reduced product? Can you explain why Los Theorem fails to conclude that $\mathbf{R}^{\mathcal{F}}$ is a field?
- 3. If \mathcal{U} is an ultrafilter on **N**, show that the ideal $I_{\mathcal{U}}$ is maximal. What can you say about the L_{rinq} -theory of $\mathbf{R}^{\mathcal{U}}$?
- 4. Conversely, show that for every ideal I of $\mathbf{R}^{\mathbf{N}}$, there is a filter \mathcal{F} on \mathbf{N} such that $\mathbf{R}^{\mathbf{N}}/I$ equals $\mathbf{R}^{\mathcal{F}}$.