Model theory 4. Cartesian and reduced products (correction)

Exercise 1

1. One can take the language $\{+, \times, 1, a, b, c\}$, the structure **N** (with $+, \times$ and 1 having their natural interpretion in **N** and the constant symbols a, b and c interpreted by m, n and p) and consider the sentence

$$(\forall x \forall y (xy = p \rightarrow (x = 1 \lor y = 1))) \land \exists u \exists v (um + vn = 1).$$

2. One can take the language of rings $\{+, \times, -, 0, 1, \leq\}$ augmented with a binary relation symbol, the natural L_{rinq} -structure on K and \leq^{K} the given linear ordering on K and the sentence

$$\forall x \forall y \forall z (x \leq y \to x + y \leq x + z) \land ((x \geq 0 \land y \geq 0) \to xy \geq 0).$$

3. One can take the language of rings $\{+, \times, -, 0, 1, \leq\}$ augmented with a binary relation symbol, the natural L_{rinq} -structure on K and \leq^{K} the given linear ordering on K and the sentence

$$\forall x (x \ge 0 \to \exists y (x = y^2)).$$

4. One can take the language of rings $\{+, \times, -, 0, 1, \leq\}$ augmented with 4 constant symbols a, b, c, d, the natural L_{ring} -structure on the field **R** of real numbers (with $a_{11}, a_{12}, a_{21}, a_{22}$ interpreting a, b, c, d) and the sentence

$$\exists x \exists y \exists s \exists t (ax + bz = 1 \land cy + dt = 1 \land ay + bt = 0 \land cx + dz = 0),$$

or even the quantifier-free sentence

$$ad - bc = 0.$$

5. One can take the language of groups, the natural L_{gp} -structure on G and the sentence

$$\exists x (\forall y (yx = xy) \land x \neq 1).$$

Exercise 2

Let $(M_i)_{i \in I}$ be *L*-structures $\varphi(x_1, \ldots, x_n)$ an atomic formula and a^1, \ldots, a^n elements of $\prod_i M_i$.

Claim 2.1

$$\prod_{i} M_{i} \models \varphi(a^{1}, \dots, a^{n}) \iff M_{i} \models \varphi(a^{1}_{i}, \dots, a^{n}_{i}) \text{ for all } i \in I$$

Proof. One can show first that, if $t(\bar{x})$ is an *L*-term, writing *M* the Cartesian product $\prod_i M_i$, then for all a^1, \ldots, a^n in *M*, one has $t^M(a^1, \ldots, a^n) = (t^{M_i}(a^1_i, \ldots, a^n))_{i \in I}$ (by induction on the complexity c(t) applying the definition of the interpretation of a constant symbol *c* and function symbol in $\prod_i M_i$). The Claim follows by applying the definition of the interpretation of a relation symbol *r* in $\prod_i M_i$. \Box

Claim 2.2 Claim 2.1 does not hold for any formula.

Proof. Consider for instance the language L with equality only, a set A with two distinct elements, the Cartesian product $A \times A$ and σ the sentence $\exists x \exists y \forall z ((x \neq y) \land (z = x \lor z = y))$ stating that there are exactly two elements.

Claim 2.3 For any $J \subset I$, the restriction map $\alpha : \prod_{i \in I} M_i \longrightarrow \prod_{j \in J} M_j$ is an *L*-morphism.

Proof. Let us write M_I for $\prod_{i \in I} M_i$ and M_J for $\prod_{i \in J} M_i$. Let c, r and f be a constant symol, an n-ary relation symbol and an n-ary function symbol respectivel. One has

$$\begin{aligned} \alpha(c^{M_I}) &= \alpha((c^{M_i})_{i \in I}) = (c^{M_i})_{i \in J} = c^{M_J}, \\ \alpha(f^{M_I}(a^1, \dots, a^n)) &= \alpha((f^{M_i}(a^1_i, \dots, a^n_i))_{i \in I}) = (f^{M_i}(a^1_i, \dots, a^n_i))_{i \in J} = f^{M_J}(\alpha(a^1), \dots, \alpha(a^n)), \quad \text{and} \\ (a^1, \dots, a^n) &\in r^{M_I} \iff (\forall i \in I) \ (a^1_i, \dots, a^n_i) \in r^{M_i} \\ &\implies (\forall i \in J) \ (a^1_i, \dots, a^n_i) \in r^{M_i} \\ &\iff ((a^1_i)_{i \in J}, \dots, (a^n_i)_{i \in J}) \in r^{M_J} \\ &\iff (\sigma(a^1), \dots, \sigma(a^n)) \in r^{M_J}. \end{aligned}$$

Note that Claim 2.1 actually holds for every *positive* formula (i.e. that does not use the negation symbol), using the Axiom of Choice.

Exercise 3

Let I and $J \subset I$ be infinite sets.

Claim 3.1 There is a non-principal ultrafilter on I that contains $\{J\}$.

Proof. Let \mathcal{F} be the Fréchet filter on I. Any finitely many elements of $\mathcal{F} \cup \{J\}$ have a non-empty intersection, so $\mathcal{F} \cup \{J\}$ generates a filter on I, which can be extended to an ultrafilter \mathcal{U} on I. As \mathcal{U} contains the Fréchet filter, \mathcal{U} is non-principal.

Claim 3.2 There is a non-principal ultrafilter on N containing $\{nN : n \ge 1\}$.

Proof. Let \mathcal{F} be the Fréchet filter on \mathbf{N} . Any finitely many elements of $\mathcal{F} \cup \{n\mathbf{N} : n \ge 1\}$ have a non-empty intersection, so $\mathcal{F} \cup \{n\mathbf{N} : n \ge 1\}$ generates a filter on \mathbf{N} , which can be extended to an ultrafilter \mathcal{U} on \mathbf{N} . As \mathcal{U} contains the Fréchet filter, \mathcal{U} is non-principal.

Claim 3.3 Let \mathcal{G} be a set of subsets of I. There is a non-principal ultrafilter extending \mathcal{G} if and only if $G_1 \cap \cdots \cap G_n$ is infinite for every G_1, \ldots, G_n in \mathcal{G} .

Proof. If $G_1 \cap \cdots \cap G_n$ is infinite for every G_1, \ldots, G_n in \mathcal{G} , then the above argument holds: $\mathcal{G} \cup \mathcal{F}$ can be extended to an ultrafilter. Conversely, any non-principal ultrafilter \mathcal{U} containing \mathcal{G} must contain the Fréchet filter \mathcal{F} , and if $G_1 \cap \cdots \cap G_n$ was finite for some G_1, \ldots, G_n in \mathcal{G} , one would have $I \setminus (G_1 \cap \cdots \cap G_n) \in \mathcal{F}$ so $(I \setminus (G_1 \cap \cdots \cap G_n)) \cap G_1 \cap \cdots \cap G_n = \emptyset \in \mathcal{U}$, a contradiction. \Box

Exercise 4

Let I be a set, $J \subset I$ a subset and \mathcal{F} the principal filter on I generated by the singleton $\{J\}$. Let $(M_i)_{i \in I}$ be a family of L-structures.

Claim 4.1 The reduced product $\prod_{\mathcal{F}} M_i$ is isomorphic to the Cartesian product $\prod_{i \in J} M_j$.

Proof. Let $\alpha : \prod_{\mathcal{F}} M_i \longrightarrow \prod_{j \in J} M_j$ be the map sending $((a_i)_{i \in I})_{\mathcal{F}}$ to $(a_j)_{j \in J}$. We claim that α is well-defined and an *L*-isomorphism. If $((a_i)_{i \in I})_{\mathcal{F}} = ((b_i)_{i \in I})_{\mathcal{F}}$, then the set $\{i \in I : a_i = b_i\}$ contains J, so $(a_i)_{i \in J} = (b_i)_{i \in J}$ and α is well-defined. If $(a_i)_{i \in J}$ is an element of $\prod_{j \in J} M_j$, let $(a_i)_{i \in I}$ in $\prod_{i \in I} M_i$ where a_i is abitrarily chosen in M_i for $i \in I \setminus J$ (using the axiom of choice). Then α maps $((a_i)_{i \in I})_{\mathcal{F}}$ to $(a_j)_{j \in J}$, so α is surjective. Let us show that α is an embedding. Let c, f and r be a constant symbol, an n-ary function symbol and and n-ary relation symbol. We write $M_{\mathcal{F}}$ for $\prod_{\mathcal{F}} M_i$ and M_J for $\prod_{j \in J} M_j$. For every n-tuple (a^1, \ldots, a^n) in $\prod_{i \in I} M_i$, one has

$$\alpha(c^{M_{\mathcal{F}}}) = ((c^{M_i})_{i \in I})_{\mathcal{F}} = (c^{M_i})_{i \in J} = c^{M_J},$$

 $\alpha(f^{M_{\mathcal{F}}}(a^{1}_{\mathcal{F}},\ldots,a^{n}_{\mathcal{F}})) = \alpha\left(\left((f^{M_{i}}(\bar{a}_{i}))_{i\in I}\right)_{\mathcal{F}}\right) = \left(f^{M_{j}}(a^{1}_{j},\ldots,a^{n}_{j})\right)_{j\in J} = f^{M_{J}}\left(\alpha(a^{1}_{\mathcal{F}}),\ldots,\alpha(a^{n}_{\mathcal{F}})\right), \text{ and }$

$$\begin{aligned} (a_{\mathcal{F}}^{1}, \dots, a_{\mathcal{F}}^{n}) \in r^{M_{\mathcal{F}}} &\iff \left\{ i \in I : (a_{i}^{1}, \dots, a_{i}^{n}) \in r^{M_{i}} \right\} \in \mathcal{F} \\ &\iff J \subset \left\{ i \in I : (a_{i}^{1}, \dots, a_{i}^{n}) \in r^{M_{i}} \right\} \\ &\iff (\forall j \in J) \ (a_{j}^{1}, \dots, a_{j}^{n}) \in r^{M_{j}} \\ &\iff (\alpha(a_{\mathcal{F}}^{1}), \dots, \alpha(a_{\mathcal{F}}^{n})) \in r^{M_{J}}. \end{aligned}$$