
Model theory
4. Cartesian and reduced products (correction)

Exercise 1

1. One can take the language {+,×, 1, a, b, c}, the structure N (with +, × and 1 having their
natural interpretion in N and the constant symbols a, b and c interpreted by m,n and p) and
consider the sentence(

∀x∀y(xy = p→ (x = 1 ∨ y = 1))
)
∧ ∃u∃v(um+ vn = 1).

2. One can take the language of rings {+,×,−, 0, 1,6} augmented with a binary relation symbol,
the natural Lring-structure on K and 6K the given linear ordering on K and the sentence

∀x∀y∀z(x 6 y → x+ y 6 x+ z) ∧
(
(x > 0 ∧ y > 0)→ xy > 0

)
.

3. One can take the language of rings {+,×,−, 0, 1,6} augmented with a binary relation symbol,
the natural Lring-structure on K and 6K the given linear ordering on K and the sentence

∀x(x > 0→ ∃y(x = y2)).

4. One can take the language of rings {+,×,−, 0, 1,6} augmented with 4 constant symbols a, b, c, d,
the natural Lring-structure on the field R of real numbers (with a11, a12, a21, a22 interpreting
a, b, c, d) and the sentence

∃x∃y∃s∃t(ax+ bz = 1 ∧ cy + dt = 1 ∧ ay + bt = 0 ∧ cx+ dz = 0),

or even the quantifier-free sentence
ad− bc = 0.

5. One can take the language of groups, the natural Lgp-structure on G and the sentence

∃x(∀y(yx = xy) ∧ x 6= 1).

Exercise 2

Let (Mi)i∈I be L-structures ϕ(x1, . . . , xn) an atomic formula and a1, . . . , an elements of
∏

i
Mi.

Claim 2.1 ∏
i
Mi |= ϕ(a1, . . . , an) ⇐⇒ Mi |= ϕ(a1

i , . . . , a
n
i ) for all i ∈ I

Proof. One can show first that, if t(x̄) is an L-term, writing M the Cartesian product
∏

i
Mi, then for

all a1, . . . , an in M , one has tM (a1, . . . , an) = (tMi(a1
i , . . . , a

n
i ))i∈I (by induction on the complexity c(t)

applying the definition of the interpretation of a constant symbol c and function symbol in
∏

i
Mi).

The Claim follows by applying the definition of the interpretation of a relation symbol r in
∏

i
Mi.
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Claim 2.2 Claim 2.1 does not hold for any formula.

Proof. Consider for instance the language L with equality only, a set A with two distinct elements,
the Cartesian product A×A and σ the sentence ∃x∃y∀z

(
(x 6= y)∧ (z = x∨ z = y)

)
stating that there

are exactly two elements.

Claim 2.3 For any J ⊂ I, the restriction map α :
∏

i∈I
Mi −→

∏
j∈J

Mj is an L-morphism.

Proof. Let us write MI for
∏

i∈I
Mi and MJ for

∏
i∈J

Mi. Let c, r and f be a constant symol, an
n-ary relation symbol and an n-ary function symbol respectivel. One has

α(cMI ) = α
(
(cMi)i∈I

)
= (cMi)i∈J = cMJ ,

α
(
fMI (a1, . . . , an)

)
= α

(
(fMi(a1

i , . . . , a
n
i ))i∈I

)
= (fMi(a1

i , . . . , a
n
i ))i∈J = fMJ (α(a1), . . . , α(an)), and

(a1, . . . , an) ∈ rMI ⇐⇒ (∀i ∈ I) (a1
i , . . . , a

n
i ) ∈ rMi

=⇒ (∀i ∈ J) (a1
i , . . . , a

n
i ) ∈ rMi

⇐⇒
(
(a1

i )i∈J , . . . , (an
i )i∈J

)
∈ rMJ

⇐⇒ (σ(a1), . . . , σ(an)) ∈ rMJ .

Note that Claim 2.1 actually holds for every positive formula (i.e. that does not use the negation
symbol), using the Axiom of Choice.

Exercise 3

Let I and J ⊂ I be infinite sets.

Claim 3.1 There is a non-principal ultrafilter on I that contains {J}.

Proof. Let F be the Fréchet filter on I. Any finitely many elements of F ∪ {J} have a non-empty
intersection, so F ∪ {J} generates a filter on I, which can be extended to an ultrafilter U on I. As U
contains the Fréchet filter, U is non-principal.

Claim 3.2 There is a non-principal ultrafilter on N containing {nN : n > 1}.

Proof. Let F be the Fréchet filter on N. Any finitely many elements of F ∪ {nN : n > 1} have a
non-empty intersection, so F ∪ {nN : n > 1} generates a filter on N, which can be extended to an
ultrafilter U on N. As U contains the Fréchet filter, U is non-principal.

Claim 3.3 Let G be a set of subsets of I. There is a non-principal ultrafilter extending G if and only
if G1 ∩ · · · ∩Gn is infinite for every G1, . . . , Gn in G.

Proof. If G1 ∩ · · · ∩ Gn is infinite for every G1, . . . , Gn in G, then the above argument holds: G ∪ F
can be extended to an ultrafilter. Conversely, any non-principal ultrafilter U containing G must
contain the Fréchet filter F , and if G1 ∩ · · · ∩Gn was finite for some G1, . . . , Gn in G, one would have
I \ (G1 ∩ · · · ∩Gn) ∈ F so (I \ (G1 ∩ · · · ∩Gn)) ∩G1 ∩ · · · ∩Gn = ∅ ∈ U , a contradiction.
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Exercise 4

Let I be a set, J ⊂ I a subset and F the principal filter on I generated by the singleton {J}. Let
(Mi)i∈I be a family of L-structures.

Claim 4.1 The reduced product
∏

F
Mi is isomorphic to the Cartesian product

∏
j∈J

Mj .

Proof. Let α :
∏

F
Mi −→

∏
j∈J

Mj be the map sending
(
(ai)i∈I

)
F to (aj)j∈J . We claim that α

is well-defined and an L-isomorphism. If
(
(ai)i∈I

)
F =

(
(bi)i∈I

)
F , then the set {i ∈ I : ai = bi}

contains J , so (ai)i∈J = (bi)i∈J and α is well-defined. If (ai)i∈J is an element of
∏

j∈J
Mj , let (ai)i∈I

in
∏

i∈I
Mi where ai is abitrarily chosen in Mi for i ∈ I \J (using the axiom of choice). Then α maps(

(ai)i∈I

)
F to (aj)j∈J , so α is surjective. Let us show that α is an embedding. Let c, f and r be a

constant symbol, an n-ary function symbol and and n-ary relation symbol. We write MF for
∏

F
Mi

and MJ for
∏

j∈J
Mj . For every n-tuple (a1, . . . , an) in

∏
i∈I

Mi, one has

α(cMF ) =
(
(cMi)i∈I

)
F = (cMi)i∈J = cMJ ,

α
(
fMF (a1

F , . . . , a
n
F )
)

= α
((

(fMi(āi))i∈I

)
F

)
=
(
fMj (a1

j , . . . , a
n
j )
)

j∈J
= fMJ

(
α(a1

F ), . . . , α(an
F )
)
, and

(
a1

F , . . . , a
n
F
)
∈ rMF ⇐⇒

{
i ∈ I : (a1

i . . . , a
n
i ) ∈ rMi

}
∈ F

⇐⇒ J ⊂
{
i ∈ I : (a1

i , . . . , a
n
i ) ∈ rMi

}
⇐⇒ (∀j ∈ J)

(
a1

j , . . . , a
n
j

)
∈ rMj

⇐⇒
(
α(a1

F ), . . . , α(an
F )
)
∈ rMJ .
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