Model theory

5. Ultraproduct and the Compactness Theorem (correction)

Exercise 1

Claim 1.1 There is a group H that has the same Lgy-theory as G’ and has infinitely many elements
of infinite order (using an ultraproduct construction).

Proof. Let U be a non-principal ultrafilter on N. The ultrapower GY, written H, is an L gp-structure
that satisfies the same Lg,-sentences as G according to Los Theorem. In particular it is a group. For
every natural number n, let g, be an element of G of order at least n. Then if i denotes the element
(90:915- -+ Gn, - - - ),;» one has for every natural number n,

R = (90,97 >G> )y # (lG,lG,...,la,...)u

for otherwise U would contain the finite set {k eEN:gp = IG} for some n, contradicting the fact that
U is non-principal. The powers of h form an infinite set of elements having infinite order. O

Claim 1.2 There is a group H that has the same Lg)-theory as G' and has infinitely many elements
of infinite order (using the Compactness Theorem).

Proof. Let ¢ be a new constant symbol and consider the Ly, U {c}-theory
N =BG U{"£1:neN}.

By assumption, G is a model of every finite subset ¥y C ¥ (one interprets ¢ by an element of G of
order greater than any natural number n occuring in ). By the Compactness Theorem, 3 has a
model (H, ng Ucfl). As H satisfies £(G), it is a group, and ¢ has infinite order. O

Claim 1.3 There is no Lgy-formula ¢(x) that satisfies for all model M of ¥(G) and element a of M
the equivalence
M = ¢(a) <= the order of a is finite.

First proof. If ¢(x) was such a formula, by Los Theorem, with the same notations as in Claim 1.1,
one would have GY |= ¢(h) so h would have finite order. O

Second proof. If p(z) was such a formula, the L U {c}-theory

Y(G)u {@(0)} U {c" #1:ne€ N}

would be finitely satisfiable (by G, interpreting ¢ by an element of G of order greater than any
natural number n occuring in the finite subset of ¥ considered) hence satisfiable by some structure
(H, LZ)UCH ), so ¢! would have both finite order (as H |= ¢(c)) and infinite order, a contradiction. [



Exercise 2

Claim 2.1 The ultraproduct Hu F, is a field having characteristic either O (when ¢/ is non-principal)
or ¢ (when U is principal, generated by {q}).

Proof. Hu F), is an ultraproduct of L;q4-structures, hence an L i q-structure. By Los’ Theorem,
Hu F), satisfies all the sentences that are true in every field Fj, and in particular, it is a field. If
the ultrafilter U is principal, it is generated by a singleton {q} for some prime number ¢, and we saw
in the previous Exercise sheet that Hu F, and F, are isomorphic L f;q-structures, so Hu F), has
characteristic ¢. If U is non-principal, it contains any cofinite set, and in particular the set

{pePiog #1441 (k times) |

for any natural number k. By Los’ Theorem, if 1;; denotes the element (172,173 155 .. 1% . ),
and Oy the element (0F2,073 05 ... 0f% .. )y, it follows that

Ou 7& 1u + -+ 1u (k‘ times),
for every k, so that Hu F}, has characteristic 0. O

Claim 2.2 Assume o is an Ly 4-sentence and that for infinitely many prime numbers p, there is a
field of characteristic p satisfying o. There is a field of characteristic 0 that satisfies o.

First proof. Let P be the infinite set of prime numbers satisfying the assumption and for every p in
P, let F, be a field of characteristic p that satisfies 0. Let U be a non-principal ultrafilter on P. By
the previous Claim, Hu F, is a field of characteristic 0. By Los’ Theorem, Hu F, satifies o. O

Second proof. Let ¥ be the set of fields axioms. The L f;¢q-theory
SU{obu{0# 1+ 41 (ktimes) : k€ N}

is finitely satisfiable by assumption, hence satisfiable by the Compactness Theorem, by an L f;eq-
structure K, which is a field (as it satisfies ¥) of characteristic 0. O

Claim 2.3 Assume that o is an L ;,q-sentence that holds for every field of characteristic 0. There is
a natural number n such that ¢ holds in every field of characteristic p > n.

Proof. By contrapositive. If for all n, there exists a field F}, of characteristic p > n such that F}, does
not satisfy o, then —o holds in a field of characteristic p for infinitely many prime numbers p, so —o
holds in a field of characteristic 0 by the previous claim. O

Exercise 3

Claim 3.1 Let R be equipped with its natural Lyi,, U {<}-structure. For any language L, R can
be expanded as an L U Lyjny U {<}-structure. If U is a non-principal ultrafilter on N, then R¥ is an
LU LyingU{<}-structure having the same L U Ly,q U {<}-theory as R, and RY is a non-Archimedian
ordered field.

Proof. Define ¢® to be 1 for any constant symbol ¢, f® to be the constant function 1 for any n-ary
function symbol f, and r® to be R™ for any n-ary relation symbol 7. The ultrapower R is an
L U Lying U {<}-structure, and by Los’ Theorem, an ordered field that satisfies the same theory as
R. The element (1,2,3,...,n,...),, is greater than any (n,n,...,n,...)y by Los” Theorem, so RY is
non-Archimedian. O



Claim 3.2 There exists a language L and an L-sentence o such that for all ordered field K, there is
an L-structure LX on K, such that K |= o if and only if K is Archimedian.

Proof. Note that an ordered field must have characteristic 0 hence contains a copy of the natural
numbers. Let P be a unary predicate (i.e. a unary relation symbol) that we interpret as the subset
{n 1k :n € N} of K and o the formula Va3y(P(y) Az < y). O

Claim 3.3 For all language L (expanding the language of ordered fields), there is no L-sentence o
such that there is an L-structure L® on R (expanding the usual ordered field structure on R), such
that for all models K of ¥(R), one has K = o if and only if K is Archimedian.

Proof. Let L be a language expanding the language of ordered fields. If there exists a sentence o and
an L-structure L® on R (expanding the usual order field structure on R) such that K = o iff K is
Archimedian for all model K of ¥(R), then (R, L®) |= ¢. For any non-principal ultrafilter &/ on N,
the L-structure RY also satisfies o by Los’ Theorem, but RY is not Archimedian by Claim 3.1. [



