Model theory 6. Ordinals and cardinals

Exercise 1 (ordinal arithmetic) 1. Show that if α is an ordinal, then $\alpha \cup \{\alpha\}$ is also an ordinal.

- 2. Show that ω^2 and ω^{ω} are countable ordinals.
- 3. Show that if α is an ordinal number obtained by finitely many applications of ordinal operations (addition, multiplication and exponentiation) to ω or natural numbers, then α is countable.

Exercise 2 (Cantor normal form) Let α, β, γ be ordinals. Show the following.

- 1. If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$ (does $\beta + \alpha < \gamma + \alpha$ also hold?).
- 2. If $\alpha < \beta$, then there exists a unique ordinal δ such that $\alpha + \delta = \beta$.
- 3. (Euclidian division) If $\alpha > 0$ and γ is arbitrary, then there exist a unique ordinal β and a unique ordinal $\rho < \alpha$ such that $\gamma = \alpha \cdot \beta + \rho$.
- 4. (writing in base ω) Every ordinal $\alpha > 0$ can be represented uniquely in the form

$$\alpha = \omega^{\beta_1} \cdot n_1 + \dots + \omega^{\beta_k} \cdot n_k,$$

where $n \ge 1$, $\alpha \ge \beta_1 > \cdots > \beta_n$ are ordinals and n_1, \ldots, n_k are non-zero natural numbers.

- **Exercise 3** (cardinal arithmetic) 1. Show that the cardinal addition $\kappa + \lambda$, multiplication $\kappa \cdot \lambda$ and exponentiation κ^{λ} are well-defined, that + and \cdot are associative and that \cdot is distributive over +.
 - 2. If X is any set, show that its power set $\mathcal{P}(X)$ has cardinality $2^{|X|}$.
 - 3. Show that $\kappa^{\lambda+\mu} = \kappa^{\lambda} \kappa^{\mu}$ holds for any cardinal numbers λ, κ and μ .
 - 4. Show that $\lambda + \lambda = \lambda$ for every infinite cardinal λ .
 - 5. Show that $\lambda \cdot \lambda = \lambda$ for every infinite cardinal λ .
 - 6. What is the cardinality of the set of finite subsets of λ ?

Exercise 4 (computing cardinals) 1. Show that the cardinality of irrational real numbers is 2^{\aleph_0} .

- 2. Let K/\mathbf{Q} be a field extension of \mathbf{Q} . Show that the set of elements of K that are algebraic over \mathbf{Q} is countable. Let K/F be any field extension. What can you say about the cardinality of the set of elements of K that are algebraic over F?
- 3. Show that the cardinality of the set of real transcendental numbers is 2^{\aleph_0} .
- 4. Let K be any field and V an infinite K-vector space with basis B. Show that |K| + |B| = |V|.