
Model theory
7. Elementary substructures and extensions (correction)

Exercise 1

Claim 1.1 Let (M,LM ) be an L-structure, ϕ(x̄) a formula and ā a tuple from M . Let us consider
the language L ∪ b̄, where we have added to L a new constant symbol bi for each coordinate of ā.
Consider the L ∪ b̄-structure M ′ = (M,LM , b̄) (i.e. every element of L has the same interpretation as
in M , and bi is interpreted by ai). Then

M |= ϕ(ā) ⇐⇒ M ′ |= ϕ((b̄)). (1)

Note that ϕ(x̄) is an L-formula, and ϕ((ā)) is an L ∪ ā-sentence.

Proof. One can show easily by induction on the complexity of an L-term t(x̄) that tM (ā) = t((b̄))M ′

for every L-term t(x̄), using the fact that fM = fM
′ for every function symbol f of L. We show (1)

by induction on the complexity of ϕ. If ϕ(x̄) is the atomic formula r(t1(x̄), . . . , tn(x̄)), then

M |= ϕ(ā) ⇐⇒
(
tM1 (ā), . . . , tMn (ā)

)
∈ rM

⇐⇒
(
t1((b̄))M ′

, . . . , tn((b̄))M ′) ∈ rM
⇐⇒

(
t1((b̄))M ′

, . . . , tn((b̄))M ′) ∈ rM ′

⇐⇒ M ′ |= ϕ((b̄)).

If (1) is proved for ψ1 and ψ2, it clearly also holds for ¬ψ1 and ψ1 ∧ ψ2. If ϕ is of the form ∃yψ(y, x̄)
and if (1) holds for ψ, as M and M ′ have the same domain, the claim holds for ∃yψ(y, x̄).

Claim 1.2 The map σ : N −→M is an elementary embedding if and only if Mσ |= ∆e(N).

Proof. By definition, σ : N −→M is an elementary embedding if and only if for all ϕ(x̄) and n̄ ∈ N ,

N |= ϕ(n̄) ⇐⇒ M |= ϕ(σ(n̄)).

Since nNidi = ni, and nMσ
i = σ(ni) for all i, by Claim 1.1,

N |= ϕ(n̄) (in L) ⇐⇒ Nid |= ϕ((n̄)) (in L ∪N), and

M |= ϕ(σ(n̄)) (in L) ⇐⇒ Mσ |= ϕ((n̄)) (in L ∪N).

It follows that σ : N −→ M is an elementary embedding if and only if Nid and Mσ have the same
L ∪N -theory, namely ∆e(N).

Claim 1.3 If M and N are elementarily equivalent (with disjoint domains).

1. ∆e(N) ∪∆e(M) is a satisfiable L ∪M ∪N -theory.

2. There is an L-structure K in which both M and N embed elementarily.
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Proof. 1. Let
Σ0 = {ϕ1((n̄)), . . . , ϕk((n̄)), φ1((m̄)), . . . , φ`((m̄))}

be a finite subsets of ∆e(N) ∪∆e(M) with n̄ ∈ N and m̄ ∈M . Put

ϕ(x̄) =
k∧
i=1

ϕk(x̄) and φ(ȳ) =
k∧
i=1

φ`(ȳ).

So N |= ϕ(n̄) and M |= φ(m̄), hence M |= ∃ȳφ(ȳ). As ∃ȳφ(ȳ) is an L-formula, and as M and N have
the same L-theory, one has N |= ∃ȳφ(ȳ), so there is a tuple ᾱ in N such that N |= φ(ᾱ). Interpreting
ni by n̄, mi by αi (this is possible since N and M are disjoint) and any other constant symbol of
N ∪M arbitrarily, N is L ∪M ∪N -structure that is a model of Σ0. By the Compactness Theorem,
∆e(N) ∪∆e(M) has a model.

2. Let (K,LK ∪NK ∪MK) be a model of ∆e(N) ∪∆e(M). Define the maps

σ : N −→ K, n 7→ nK and τ : M −→ K, m 7→ mK .

The reduct Kσ = (K,LK ∪NK) is a model of ∆e(N), and Kτ = (K,LK ∪MK) is a model of ∆e(M).
By Claim 1.2, σ and τ are elementary L-embeddings.

Exercise 2

Claim 2.1

Proof.

Exercise 3

Claim 3.1

Proof.

Exercise 4

Claim 4.1 1. An Lring-formula ϕ(x̄) is of the form t(x̄) = s(x̄) for some Lring-terms s, t.

2. For any Lring-term t(x̄) with x̄ = (x1, . . . , xn), there is a polynomial P (x̄) in n variables with
coefficients in Z such that, for every field K and k̄ ∈ K,

tK(k̄) = P (k̄).

(note that if P (x̄) = aαm x̄
αm + · · · + aα1 x̄

α1 + a0̄ where αi = (αi1, . . . , αin) ∈ Nn, ai ∈ N
and x̄αi = xαi11 · · ·xαinn , then by definition, P (k̄) = aαm k̄

αm + · · · + aα1 k̄
α1 + a0̄1K , so P (k̄) is

well-defined even if K has characteristic p.)

3. In particular, an Lring-formula ϕ(x̄) is equivalent modulo the theory of fields to P (x̄) = 0 for
some polynomial P with coefficients in Z.

Proof. 1. By definition of an atomic formula, as = is the only relation symbol in the language.
2. Similar to Exercise 1 in Sheet 2, where this was done for the particular case of R. By induction

on c(t): if t is a constant symbol c ∈ {0, 1}, then P (x̄) = c. If t is a variable xi, then P (x̄) = xi. If t
is of the form t1 ∗ t2 with ∗ ∈ {+,×,−}, tK1 = P1 and tK2 = P2 then tK = P1 ∗ P2 hence P = P1 ∗ P2,
which is in Z[x̄] since Z[x̄] is a ring.

3. For any field K, any k̄ ∈ Kn and P,Q in Z[x̄], one has P (k̄) = Q(k̄) ⇐⇒ (P −Q)(k̄) = 0.
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Claim 4.2 Let M and N be two algebraically closed fields, ā in M and b̄ in N two n-tuples such that
for any atomic Lring-formula ϕ(x̄), one has

M |= ϕ(ā) ⇐⇒ N |= ϕ(b̄). (2)

Then (2) holds for any Lring-formula ϕ(x̄).

Proof. By induction on the complexity of ϕ. It holds for atomic formulas by assumption, and obviously
holds for ¬ϕ and ϕ∧ψ as soon as it holds for ϕ and ψ. Assume that M |= ∃yψ(y, ā). Then there is α
in M such that M |= ψ(α, ā). Let K be the prime field of M (i.e. Q or Z/pZ), and K(ā) the subfield
of M generated by ā. Note that K is also the prime field of N by (2). If α is algebraic over K(ā),
let Pā be its minimal polynomial:

Pā(x) = S0(ā) + S1(ā)x+ · · ·+ Sn(ā)xn

Sn(ā) for S0, . . . , Sn ∈ Z[x̄].

Let Pb̄ be the polynomial S0(b̄) + S1(b̄)x+ · · ·+ Sn(b̄)xn

Sn(b̄)
with coefficients Si(b̄) in N obtained replac-

ing ā by b̄ (note that Pb̄ is uniquely defined: if S(ā) = T (ā) for some S, T in K(x̄), then S(b̄) = T (b̄)
holds by (2)). As N is algebraically closed, there is a root β of Pb̄ in N . If Q(α, ā) = 0 for some
polynomial Q ∈ Z[y, x̄], then α is a root of the one variable polynomial Q(y, ā), so Q(y, ā) = Rā · Pā
for some one variable polynomial Rā(y) with coefficients in K(ā). One has

Rā(y) = T0(ā) + T1(ā)y + · · ·+ Tm(ā)ym

T (ā) for some T, T0, . . . , Tm ∈ Z[x̄], and

Q(y, ā) = Q0(ā) +Q1(ā)y + · · ·+Qm+m(ā)ym for some Q0, . . . , Qn+m ∈ Z[x̄].

As equality of two polynomials is given by equality of their coefficients, one has

Q(y, ā) = Rā · Pā ⇐⇒ Qi(ā) · T (ā) · Sn(ā) =
∑

p+q=i
Tp(ā)Qq(ā) for all 0 6 i 6 n+m.

By (2), one must also have

Qi(b̄) · T (b̄) · Sn(b̄) =
∑

p+q=i
Tp(b̄)Qq(b̄) for all 0 6 i 6 n+m,

hence the decomposition Q(y, b̄) = Rb̄ · Pb̄ in K(b̄)(y), so that we have Q(β, b̄) = 0. By a sym-
metry argument, this shows that (α, ā) and (β, b̄) are roots of the same polynomials with coeffi-
cients in Z, hence satisfy the same atomic formulas by Claim 4.1. By induction hypothesis, one has
M |= ψ(α, ā) ⇐⇒ N |= ψ(β, b̄). This shows that N |= ∃ψ(y, b̄). The converse implication holds
by symmetry of the assumptions. If α is transcendental over K(ā), let N1 be an uncountable
elementary extension of N . As the subsets of N1 of elements that are algebraic over K(b̄) is countable,
there exists an element β in N1 that is transcendental over K(b̄). If Q(α, ā) = 0 for some polynomial
Q with coefficients in Z, then Q(x, ā) must be the zero polynomial, hence Q(x, b̄) is also zero by (2),
so Q(β, b̄) = 0. By a symmetric argument, this shows that (α, ā) and (β, b̄) are roots of the same
polynomials with coefficients in Z, hence satisfy the same atomic formulas by Claim 4.1. By induction
hypothesis (applied to M and N1), one has N1 |= ψ(β, b̄), so N1 |= ∃yψ(y, b̄) hence N |= ∃yψ(y, b̄) (as
N � N1).

Claim 4.3 ACF is model complete.

Proof. Let N,M be two algebraically closed field with N ⊂Lring M (i.e. N is a subring of M). Let ā
be a tuple in N . For every atomic Lring-formula ψ(x̄), one has

N |= ψ(ā) ⇐⇒ M |= ψ(ā).

By Claim 4.2, one also has N |= ϕ(ā) ⇐⇒ M |= ϕ(ā) for every Lring-formula ϕ(x̄) and so N �M .
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