Model theory 9. Axiomatisable classes

Exercise 1 (universal and existential axiomatisations) Let C be an axiomatisable class of L-structures.

- 1. Recall an equivalent condition to C being universally axiomatisable, and give examples and counterexamples of such classes C.
- 2. A group G is called *locally finite* if every finitely generated subgroup of G is finite. Is a subgroup of a locally finite subgroup G locally finite? Is the class of locally finite subgroups universally axiomatisable in L_{qp} ?
- 3. Show that if a class of *L*-structures C is existentially axiomatisable, then for all N in C and $N \subset_L M$, one has $M \in C$.

Exercise 2 (a characterisation of axiomatisable classes) Let \mathcal{C} be a class of L-structures. We say that \mathcal{C} is closed under elementary equivalence if for every M in \mathcal{C} , every L-structure N that is elementary equivalent to M is in \mathcal{C} . We say that \mathcal{C} is closed under ultraproducts if for every set I, every ultrafilter \mathcal{U} on I and every family $(M_i)_{i \in I}$ of elements of \mathcal{C} , the ultraproduct $\prod_{i \in I} M_i$ is in \mathcal{C} .

- 1. Show that if \mathcal{C} is axiomatisable, then \mathcal{C} is closed under elementary equivalence and ultraproducts.
- 2. Show that if C is closed under elementary equivalence and ultraproducts, then C is axiomatisable.
- 3. Show that C is contained in a class of L-structures D that is axiomatisable.
- 4. Let \mathcal{D} be the class of all *L*-structures *M* such that *M* is elementary equivalent to an ultraproduct of members of \mathcal{C} . Show that \mathcal{D} is axiomatisable, and that it is the least axiomatisable class that contains \mathcal{C} .

Exercise 3 (on simple groups, again) In Exercise sheet 7, it was shown that if G is a simple group in the language L_{gp} , then every elementary substructure of G is also a simple group. Is the class of simple groups axiomatisable?